MATH 415
 Modern Algebra I

Lecture 19:
 Review for Exam 2.

Topics for Exam 2

Basic theory of rings and fields:

- Rings and fields
- Integral domains
- Modular arithmetic
- Rings of polynomials
- Factorization of polynomials

Fraleigh: Sections 18-23

Sample problems

Problem 1. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

Problem 2. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
{[0]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right), \quad B=\left(\begin{array}{cc}
{[1]} & {[0]} \\
{[0]} & {[1]}
\end{array}\right), \\
& C=\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[1]} & {[0]}
\end{array}\right), \quad D=\left(\begin{array}{cc}
{[0]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right) .
\end{aligned}
$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Sample problems

Problem 3. Prove that for a ring with unity, commutativity of addition follows from the other axioms.

Problem 4. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible elements of the ring \mathbb{Z}_{16}).

Problem 5. Determine the last two digits of 303^{303}.

Problem 6. Find all integer solutions of the equation $21 x-32 y=4$.

Sample problems

Problem 7. Find all integer solutions of the equation $2 x+3 y+5 z=7$.

Problem 8. Solve the equation $2 x^{100}+x^{71}+x^{29}=0$ over the field \mathbb{Z}_{11}.

Problem 9. Factor a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field \mathbb{Z}_{7}.

Problem 10. Factor a polynomial $p(x)=x^{4}+x^{3}-2 x^{2}+3 x-1$ into irreducible factors over the field \mathbb{Q}.

Problem 1. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

The set M is closed under matrix addition, taking the negative, and matrix multiplication as

$$
\begin{aligned}
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)+\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n+n^{\prime} & k+k^{\prime} \\
0 & n+n^{\prime}
\end{array}\right), \\
- & \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
-n & -k \\
0 & -n
\end{array}\right), \\
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n n^{\prime} & n k^{\prime}+k n^{\prime} \\
0 & n n^{\prime}
\end{array}\right) .
\end{aligned}
$$

Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring.

Problem 1. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

The ring M is not a field since it has zero-divisors (and zero-divisors do not admit multiplicative inverses).
For example, the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M$ is a divisor of zero as

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Problem 2. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :
$A=\left(\begin{array}{cc}{[0]} & {[0]} \\ {[0]} & {[0]}\end{array}\right), \quad B=\left(\begin{array}{cc}{[1]} & {[0]} \\ {[0]} & {[1]}\end{array}\right), \quad C=\left(\begin{array}{cc}{[1]} & {[1]} \\ {[1]} & {[0]}\end{array}\right), \quad D=\left(\begin{array}{cc}{[0]} & {[1]} \\ {[1]} & {[1]}\end{array}\right)$.
Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

First we build the addition and multiplication tables for L (meanwhile checking that L is closed under both operations):

+	A	B	C	D
A	A	B	C	D
B	B	A	D	C
C	C	D	A	B
D	D	C	B	A

\times	A	B	C	D
A	A	A	A	A
B	A	B	C	D
C	A	C	D	B
D	A	D	B	C

Analyzing these tables, we find that both operations are commutative on L, A is the additive identity element, and B is the multiplicative identity element. Also, $B^{-1}=B, C^{-1}=D$, $D^{-1}=C$, and $-X=X$ for all $X \in L$. The associativity of addition and multiplication as well as the distributive law hold on L since they hold for all 2×2 matrices. Thus L is a field.

Problem 3. Prove that for a ring with unity, commutativity of addition follows from the other axioms.

Suppose R is a set with two operations, addition and multiplication, that satisfies all axioms of a ring with unity except, possibly, commutativity of addition. We need to show that addition is commutative anyway: $x+y=y+x$ for all $x, y \in R$. Let us simplify $(1+1)(x+y)$ in two different ways:

$$
\begin{aligned}
(1+1)(x+y) & =1(x+y)+1(x+y)=(x+y)+(x+y) \\
(1+1)(x+y) & =(1+1) x+(1+1) y \\
& =(1 x+1 x)+(1 y+1 y)=(x+x)+(y+y) .
\end{aligned}
$$

Hence $(x+y)+(x+y)=(x+x)+(y+y)$. It follows that $(-x)+(x+y)+(x+y)+(-y)=(-x)+(x+x)+(y+y)+(-y)$, $(-x+x)+(y+x)+(y+(-y))=(-x+x)+(x+y)+(y+(-y))$, $0+(y+x)+0=0+(x+y)+0 \Longrightarrow y+x=x+y$.

Remark. The same argument proves that for a vector space, commutativity of vector addition follows from the other axioms.

Problem 4. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible elements of the ring \mathbb{Z}_{16}).

A congruence class [a] ${ }_{16}$ is invertible in \mathbb{Z}_{16} if and only if a is coprime with 16 , that is, if a is odd. There are 8 congruence classes in G_{16} : [1], [3], [5], [7], [9], [11], [13], [15].
Classification of finite abelian groups implies that G_{16} is isomorphic to $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. These three groups are distinguished by orders of their elements: \mathbb{Z}_{8} has elements of order $1,2,4$ and $8 ; \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ has elements of order 1,2 and $4 ; \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has only elements of order 1 and 2 .

Let us find orders for all elements of G_{16}.
[1] has order 1.
$[3]^{2}=[9],[3]^{4}=[9]^{2}=[81]=[1]$, hence $[3]$ has order 4.
$[5]^{2}=[25]=[9],[5]^{4}=[9]^{2}=[1]$, hence $[5]$ has order 4.
$[7]^{2}=[49]=[1]$, hence $[7]$ has order 2.
$[9]^{2}=[1]$, hence $[9]$ has order 2 .
$[11]^{2}=[-5]^{2}=[5]^{2}=[9]$, hence $[11]$ has order 4 .
$[13]^{2}=[-3]^{2}=[9]$, hence [13] has order 4 .
$[15]^{2}=[-1]^{2}=[1]$, hence [15] has order 2 .
We conclude that $G_{16} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

Problem 5. Determine the last two digits of 303^{303}.
The last two digits form the remainder under division by 100 .
We know that $\phi(100)=40$. It follows from Euler's Theorem that $3^{40} \equiv 1 \bmod 100$. Then
$\left[303^{303}\right]=[303]^{303}=[3]^{303}=[3]^{40 \cdot 7+23}=\left([3]^{40}\right)^{7}[3]^{23}=[3]^{23}$.
We have $[3]^{2}=[9],[3]^{3}=[9][3]=[27],[3]^{4}=[27][3]=[81]$,
$[3]^{5}=[81][3]=[43],[3]^{6}=[43][3]=[29]$,
$[3]^{7}=[29][3]=[87], \quad[3]^{8}=[87][3]=[61]$,
$[3]^{9}=[61][3]=[83], \quad[3]^{10}=[83][3]=[49]$,
$[3]^{11}=[49][3]=[47], \quad[3]^{12}=[47][3]=[41]$,
$[3]^{13}=[41][3]=[23], \quad[3]^{14}=[23][3]=[69]$,
$[3]^{15}=[69][3]=[7], \quad[3]^{16}=[7][3]=[21]$,
$[3]^{17}=[21][3]=[63], \quad[3]^{18}=[63][3]=[89]$,
$[3]^{19}=[89][3]=[67], \quad[3]^{20}=[67][3]=[1]$,
Finally, $[3]^{23}=[3]^{3}=[27]$ so that $303^{303}=\ldots 27$.
Remark. It turns out that $G_{100} \cong \mathbb{Z}_{20} \times \mathbb{Z}_{2}$. Therefore the order of each element of the group G_{100} is a divisor of 20 .

Problem 5. Determine the last two digits of 303^{303}.

Alternative solution: The last two digits form the remainder under division by 100 . First let us find the remainders under division by 25 and 4 . We have $\phi(25)=25-5=20$ and $\phi(4)=4-2=2$. It follows from Euler's Theorem that $303^{20} \equiv 1 \bmod 25$ and $303^{2} \equiv 1 \bmod 4$. Then

$$
\begin{aligned}
{\left[303^{303}\right]_{25} } & =[303]_{25}^{303}=[303]_{25}^{20.15+3}=\left([303]_{25}^{20}\right)^{15}[303]_{25}^{3} \\
& =[303]_{25}^{3}=[3]_{25}^{3}=\left[3^{3}\right]_{25}=[27]_{25}=[2]_{25}, \\
{\left[303^{303}\right]_{4} } & =[303]_{4}^{303}=[303]_{4}^{2.151+1}=\left([303]_{4}^{2}\right)^{151}[303]_{4} \\
& =[303]_{4}=[3]_{4} .
\end{aligned}
$$

Since $303^{303} \equiv 2 \bmod 25$, the remainder of 303^{303} under division by 100 is among the four numbers $2,27=2+25$, $52=2+25 \cdot 2$, and $77=2+25 \cdot 3$. We pick the one that has remainder 3 under division by 4 . That's 27 .

Problem 6. Find all integer solutions of the equation $21 x-32 y=4$.

An integer y is a part of an integer solution (x, y) of the equation if and only if it is a solution of the linear congruence $-32 y \equiv 4 \bmod 21$. Since $-32 \equiv 10 \bmod 21$, this is equivalent to $10 y \equiv 4 \bmod 21$. Further, we can cancel the common factor 2 on both sides of the congruence (since 2 is coprime with 21): $10 y \equiv 4 \bmod 21 \Longleftrightarrow 5 y \equiv 2 \bmod 21$. To solve the latter linear congruence, we need to find the multiplicative inverse of 5 modulo 21 . This is -4 as $-4 \cdot 5=-20 \equiv 1 \bmod 21$. Hence

$$
5 y \equiv 2 \bmod 21 \Longleftrightarrow y \equiv-4 \cdot 2 \equiv-8 \bmod 21
$$

In other words, $y=-8+21 k$ for some $k \in \mathbb{Z}$. The corresponding value of x can be found from the equation: $x=(4+32 y) / 21=(4+32(-8+21 k)) / 21=-12+32 k$ (it should be integer as well). Thus the general integer solution is $x=-12+32 k, y=-8+21 k$, where $k \in \mathbb{Z}$.

Problem 7. Find all integer solutions of the equation $2 x+3 y+5 z=7$.

Let us rewrite the equation as $2 x+3 y=c(z)$, where $c(z)=7-5 z$, and consider $c(z)$ an integer parameter.
If (x, y) is an integer solution, then x is a solution of the congruence $2 x \equiv c(z) \bmod 3$. Then $4 x \equiv 2 c(z) \bmod 3$ and $x \equiv 2 c(z) \bmod 3$. Conversely, if $x=2 c(z)+3 k$, where $k \in \mathbb{Z}$, then we can find y from the equation, $y=(c(z)-2 x) / 3=-c(z)-2 k$, and it is also an integer. All this can be done for any integer value of z.
Thus the general integer solution of the original equation is

$$
\begin{aligned}
& z=m, \\
& x=2 c(m)+3 k=3 k-10 m+14, \\
& y=-c(m)-2 k=-2 k+5 m-7,
\end{aligned}
$$

where k and m are arbitrary integers.

Problem 8. Solve the equation
$2 x^{100}+x^{71}+x^{29}=0$ over the field \mathbb{Z}_{11}.
The equation is equivalent to

$$
x^{29}\left(2 x^{71}+x^{42}+1\right)=0
$$

Hence $x=0$ or $2 x^{71}+x^{42}+1=0$. By Fermat's Little Theorem, $x^{10}=1$ for any nonzero $x \in \mathbb{Z}_{11}$.
Since 0 is not a solution of the equation
$2 x^{71}+x^{42}+1=0$, this equation is equivalent to $2 x+x^{2}+1=0 \Longleftrightarrow(x+1)^{2}=0 \Longleftrightarrow x=-1$.
Thus the solutions are $x=0$ and $x=10$ (note that $-1 \equiv 10 \bmod 11$).

Problem 9. Factor a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field \mathbb{Z}_{7}.

A quadratic or cubic polynomial is irreducible if and only if it has no zeros. Indeed, if such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is linear. This implies that the original polynomial has a zero.

Let us look for the zeros of $p(x): \quad p(0)=-2, \quad p(1)=-1$, $p(2)=0$. Hence $p(x)$ is divisible by $x-2$:

$$
x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right) .
$$

Now let us look for the zeros of the polynomial $q(x)=x^{2}-x+1$. Note that values 0 and 1 can be skipped this time. We obtain $q(2)=3, q(3)=7 \equiv 0 \bmod 7$. Hence $q(x)$ is divisible by $x-3: x^{2}-x+1=(x-3)(x+2)$.
Thus $x^{3}-3 x^{2}+3 x-2=(x-2)(x-3)(x+2)$ over the field \mathbb{Z}_{7}.

Problem 10. Factor $p(x)=x^{4}+x^{3}-2 x^{2}+3 x-1$ into irreducible factors over the field \mathbb{Q}.

Possible rational zeros of p are 1 and -1 . They are not zeros. Hence p is either irreducible over \mathbb{Q} or else it is factored as

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(a x^{2}+b x+c\right)\left(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}\right) .
$$

Since $p \in \mathbb{Z}[x]$, one can show that the factorization (if it exists) can be chosen so that all coefficients are integer. Additionally, we can assume that $a \geq 0$ (otherwise we could multiply each factor by -1). Equating the corresponding coefficients of the left-hand side and the right-hand side, we obtain $a a^{\prime}=1, a b^{\prime}+a^{\prime} b=1, a c^{\prime}+b b^{\prime}+a^{\prime} c=-2$, $b c^{\prime}+b^{\prime} c=3$ and $c c^{\prime}=-1$. The first and the last equations imply that $a=a^{\prime}=1, c=1$ or -1 , and $c^{\prime}=-c$. Then $b+b^{\prime}=1$ and $b b^{\prime}=-2$, which implies $\left\{b, b^{\prime}\right\}=\{2,-1\}$. Finally, $c=-1$ if $b=2$ and $c=1$ if $b=-1$. We can check that indeed

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(x^{2}+2 x-1\right)\left(x^{2}-x+1\right) .
$$

