MATH 415 Modern Algebra I

Lecture 19: Review for Exam 2.

Topics for Exam 2

Basic theory of rings and fields:

- Rings and fields
- Integral domains
- Modular arithmetic
- Rings of polynomials
- Factorization of polynomials

```
Fraleigh: Sections 18-23
```

Sample problems

Problem 1. Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

Problem 2. Let *L* be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_2 :

$$A = \begin{pmatrix} [0] & [0] \\ [0] & [0] \end{pmatrix}, \quad B = \begin{pmatrix} [1] & [0] \\ [0] & [1] \end{pmatrix},$$
$$C = \begin{pmatrix} [1] & [1] \\ [1] & [0] \end{pmatrix}, \quad D = \begin{pmatrix} [0] & [1] \\ [1] & [1] \end{pmatrix}.$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Sample problems

Problem 3. Prove that for a ring with unity, commutativity of addition follows from the other axioms.

Problem 4. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible elements of the ring \mathbb{Z}_{16}).

Problem 5. Determine the last two digits of 303³⁰³.

Problem 6. Find all integer solutions of the equation 21x - 32y = 4.

Sample problems

Problem 7. Find all integer solutions of the equation 2x + 3y + 5z = 7.

Problem 8. Solve the equation $2x^{100} + x^{71} + x^{29} = 0$ over the field \mathbb{Z}_{11} .

Problem 9. Factor a polynomial $p(x) = x^3 - 3x^2 + 3x - 2$ into irreducible factors over the field \mathbb{Z}_7 .

Problem 10. Factor a polynomial $p(x) = x^4 + x^3 - 2x^2 + 3x - 1$ into irreducible factors over the field \mathbb{Q} .

Problem 1. Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

The set M is closed under matrix addition, taking the negative, and matrix multiplication as

$$\begin{pmatrix} n & k \\ 0 & n \end{pmatrix} + \begin{pmatrix} n' & k' \\ 0 & n' \end{pmatrix} = \begin{pmatrix} n+n' & k+k' \\ 0 & n+n' \end{pmatrix},$$
$$- \begin{pmatrix} n & k \\ 0 & n \end{pmatrix} = \begin{pmatrix} -n & -k \\ 0 & -n \end{pmatrix},$$
$$\begin{pmatrix} n & k \\ 0 & n \end{pmatrix} \begin{pmatrix} n' & k' \\ 0 & n' \end{pmatrix} = \begin{pmatrix} nn' & nk'+kn' \\ 0 & nn' \end{pmatrix}.$$

Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring. **Problem 1.** Let *M* be the set of all 2×2 matrices of the form $\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}$, where *n* and *k* are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does *M* form a field?

The ring M is not a field since it has zero-divisors (and zero-divisors do not admit multiplicative inverses). For example, the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M$ is a divisor of zero as

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Problem 2. Let *L* be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_2 :

 $A = \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, D = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}.$ Under the operations of matrix addition and multiplication, does this set form a ring? Does *L* form a field?

First we build the addition and multiplication tables for L (meanwhile checking that L is closed under both operations):

+	A	В	С	D
Α	A	В	С	D
В	В	Α	D	С
С	С	D	Α	В
D	D	С	В	Α

\times	Α	В	С	D
Α	A	Α	Α	Α
В	A	В	С	D
С	A	С	D	В
D	A	D	В	С

Analyzing these tables, we find that both operations are commutative on *L*, *A* is the additive identity element, and *B* is the multiplicative identity element. Also, $B^{-1} = B$, $C^{-1} = D$, $D^{-1} = C$, and -X = X for all $X \in L$. The associativity of addition and multiplication as well as the distributive law hold on *L* since they hold for all 2×2 matrices. Thus *L* is a field. **Problem 3.** Prove that for a ring with unity, commutativity of addition follows from the other axioms.

Suppose R is a set with two operations, addition and multiplication, that satisfies all axioms of a ring with unity except, possibly, commutativity of addition. We need to show that addition is commutative anyway: x + y = y + x for all $x, y \in R$. Let us simplify (1+1)(x+y) in two different ways: (1+1)(x+y) = 1(x+y) + 1(x+y) = (x+y) + (x+y),(1+1)(x+y) = (1+1)x + (1+1)y= (1x + 1x) + (1y + 1y) = (x + x) + (y + y).Hence (x + y) + (x + y) = (x + x) + (y + y). It follows that (-x)+(x+y)+(x+y)+(-y) = (-x)+(x+x)+(y+y)+(-y),(-x+x)+(y+x)+(y+(-y)) = (-x+x)+(x+y)+(y+(-y)), $0 + (y + x) + 0 = 0 + (x + y) + 0 \implies y + x = x + y.$

Remark. The same argument proves that for a vector space, commutativity of vector addition follows from the other axioms.

Problem 4. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible elements of the ring \mathbb{Z}_{16}).

A congruence class $[a]_{16}$ is invertible in \mathbb{Z}_{16} if and only if *a* is coprime with 16, that is, if *a* is odd. There are 8 congruence classes in G_{16} : [1], [3], [5], [7], [9], [11], [13], [15].

Classification of finite abelian groups implies that G_{16} is isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. These three groups are distinguished by orders of their elements: \mathbb{Z}_8 has elements of order 1, 2, 4 and 8; $\mathbb{Z}_4 \times \mathbb{Z}_2$ has elements of order 1, 2 and 4; $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has only elements of order 1 and 2.

Let us find orders for all elements of G_{16} .

[1] has order 1. $[3]^2 = [9], [3]^4 = [9]^2 = [81] = [1],$ hence [3] has order 4. $[5]^2 = [25] = [9], [5]^4 = [9]^2 = [1],$ hence [5] has order 4 $[7]^2 = [49] = [1]$, hence [7] has order 2. $[9]^2 = [1]$, hence [9] has order 2. $[11]^2 = [-5]^2 = [5]^2 = [9]$, hence [11] has order 4. $[13]^2 = [-3]^2 = [9]$, hence [13] has order 4. $[15]^2 = [-1]^2 = [1]$, hence [15] has order 2.

We conclude that $G_{16} \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.

Problem 5. Determine the last two digits of 303³⁰³.

The last two digits form the remainder under division by 100. We know that $\phi(100) = 40$. It follows from Euler's Theorem that $3^{40} \equiv 1 \mod 100$. Then $[303^{303}] = [303]^{303} = [3]^{303} = [3]^{40\cdot7+23} = ([3]^{40})^7 [3]^{23} = [3]^{23}.$ We have $[3]^2 = [9]$, $[3]^3 = [9][3] = [27]$, $[3]^4 = [27][3] = [81]$, $[3]^5 = [81][3] = [43], [3]^6 = [43][3] = [29],$ $[3]^7 = [29][3] = [87], [3]^8 = [87][3] = [61],$ $[3]^9 = [61][3] = [83], \ [3]^{10} = [83][3] = [49],$ $[3]^{11} = [49][3] = [47], \ [3]^{12} = [47][3] = [41],$ $[3]^{13} = [41][3] = [23], \ [3]^{14} = [23][3] = [69],$ $[3]^{15} = [69][3] = [7], \ [3]^{16} = [7][3] = [21],$ $[3]^{17} = [21][3] = [63], \ [3]^{18} = [63][3] = [89],$ $[3]^{19} = [89][3] = [67], \ [3]^{20} = [67][3] = [1],$ Finally, $[3]^{23} = [3]^3 = [27]$ so that $303^{303} = \dots 27$.

Remark. It turns out that $G_{100} \cong \mathbb{Z}_{20} \times \mathbb{Z}_2$. Therefore the order of each element of the group G_{100} is a divisor of 20.

Problem 5. Determine the last two digits of 303^{303} .

Alternative solution: The last two digits form the remainder under division by 100. First let us find the remainders under division by 25 and 4. We have $\phi(25) = 25 - 5 = 20$ and $\phi(4) = 4 - 2 = 2$. It follows from Euler's Theorem that $303^{20} \equiv 1 \mod 25$ and $303^2 \equiv 1 \mod 4$. Then

$$\begin{split} [303^{303}]_{25} &= [303]_{25}^{303} = [303]_{25}^{20\cdot15+3} = ([303]_{25}^{20})^{15} [303]_{25}^{3} \\ &= [303]_{25}^{3} = [3]_{25}^{3} = [3^{3}]_{25} = [27]_{25} = [2]_{25}, \\ [303^{303}]_{4} &= [303]_{4}^{303} = [303]_{4}^{2\cdot151+1} = ([303]_{4}^{2})^{151} [303]_{4} \\ &= [303]_{4} = [3]_{4}. \end{split}$$

Since $303^{303} \equiv 2 \mod 25$, the remainder of 303^{303} under division by 100 is among the four numbers 2, 27 = 2 + 25, $52 = 2 + 25 \cdot 2$, and $77 = 2 + 25 \cdot 3$. We pick the one that has remainder 3 under division by 4. That's 27. **Problem 6.** Find all integer solutions of the equation 21x - 32y = 4.

An integer y is a part of an integer solution (x, y) of the equation if and only if it is a solution of the linear congruence $-32y \equiv 4 \mod 21$. Since $-32 \equiv 10 \mod 21$, this is equivalent to $10y \equiv 4 \mod 21$. Further, we can cancel the common factor 2 on both sides of the congruence (since 2 is coprime with 21): $10y \equiv 4 \mod 21 \iff 5y \equiv 2 \mod 21$. To solve the latter linear congruence, we need to find the multiplicative inverse of 5 modulo 21. This is -4 as $-4 \cdot 5 = -20 \equiv 1 \mod 21$. Hence

 $5y \equiv 2 \mod 21 \iff y \equiv -4 \cdot 2 \equiv -8 \mod 21.$

In other words, y = -8 + 21k for some $k \in \mathbb{Z}$. The corresponding value of x can be found from the equation: x = (4 + 32y)/21 = (4 + 32(-8 + 21k))/21 = -12 + 32k (it should be integer as well). Thus the general integer solution is x = -12 + 32k, y = -8 + 21k, where $k \in \mathbb{Z}$. **Problem 7.** Find all integer solutions of the equation 2x + 3y + 5z = 7.

Let us rewrite the equation as 2x + 3y = c(z), where c(z) = 7 - 5z, and consider c(z) an integer parameter.

If (x, y) is an integer solution, then x is a solution of the congruence $2x \equiv c(z) \mod 3$. Then $4x \equiv 2c(z) \mod 3$ and $x \equiv 2c(z) \mod 3$. Conversely, if x = 2c(z) + 3k, where $k \in \mathbb{Z}$, then we can find y from the equation, y = (c(z) - 2x)/3 = -c(z) - 2k, and it is also an integer. All this can be done for any integer value of z.

Thus the general integer solution of the original equation is

$$z = m,$$

 $x = 2c(m) + 3k = 3k - 10m + 14,$
 $y = -c(m) - 2k = -2k + 5m - 7,$

where k and m are arbitrary integers.

Problem 8. Solve the equation $2x^{100} + x^{71} + x^{29} = 0$ over the field \mathbb{Z}_{11} .

The equation is equivalent to

$$x^{29}(2x^{71}+x^{42}+1)=0.$$

Hence x = 0 or $2x^{71} + x^{42} + 1 = 0$. By Fermat's Little Theorem, $x^{10} = 1$ for any nonzero $x \in \mathbb{Z}_{11}$. Since 0 is not a solution of the equation $2x^{71} + x^{42} + 1 = 0$, this equation is equivalent to $2x + x^2 + 1 = 0 \iff (x + 1)^2 = 0 \iff x = -1$. Thus the solutions are x = 0 and x = 10(note that $-1 \equiv 10 \mod 11$). **Problem 9.** Factor a polynomial $p(x) = x^3 - 3x^2 + 3x - 2$ into irreducible factors over the field \mathbb{Z}_7 .

A quadratic or cubic polynomial is irreducible if and only if it has no zeros. Indeed, if such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is linear. This implies that the original polynomial has a zero.

Let us look for the zeros of
$$p(x)$$
: $p(0) = -2$, $p(1) = -1$,
 $p(2) = 0$. Hence $p(x)$ is divisible by $x - 2$:
 $x^3 - 3x^2 + 3x - 2 = (x - 2)(x^2 - x + 1)$.

Now let us look for the zeros of the polynomial $q(x) = x^2 - x + 1$. Note that values 0 and 1 can be skipped this time. We obtain q(2) = 3, $q(3) = 7 \equiv 0 \mod 7$. Hence q(x) is divisible by x - 3: $x^2 - x + 1 = (x - 3)(x + 2)$. Thus $x^3 - 3x^2 + 3x - 2 = (x - 2)(x - 3)(x + 2)$ over the field \mathbb{Z}_7 . **Problem 10.** Factor $p(x) = x^4 + x^3 - 2x^2 + 3x - 1$ into irreducible factors over the field \mathbb{Q} .

Possible rational zeros of p are 1 and -1. They are not zeros. Hence p is either irreducible over \mathbb{Q} or else it is factored as

$$x^4 + x^3 - 2x^2 + 3x - 1 = (ax^2 + bx + c)(a'x^2 + b'x + c').$$

Since $p \in \mathbb{Z}[x]$, one can show that the factorization (if it exists) can be chosen so that all coefficients are integer. Additionally, we can assume that a > 0 (otherwise we could multiply each factor by -1). Equating the corresponding coefficients of the left-hand side and the right-hand side, we obtain aa' = 1. ab' + a'b = 1. ac' + bb' + a'c = -2. bc' + b'c = 3 and cc' = -1. The first and the last equations imply that a = a' = 1, c = 1 or -1, and c' = -c. Then b + b' = 1 and bb' = -2, which implies $\{b, b'\} = \{2, -1\}$. Finally, c = -1 if b = 2 and c = 1 if b = -1. We can check that indeed

$$x^4 + x^3 - 2x^2 + 3x - 1 = (x^2 + 2x - 1)(x^2 - x + 1).$$