Sample problems for Exam 2

Any problem may be altered, removed or replaced by a different one!

Problem 1. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{cc}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

Problem 2. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :

$$
A=\left(\begin{array}{cc}
{[0]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right), \quad B=\left(\begin{array}{cc}
{[1]} & {[0]} \\
{[0]} & {[1]}
\end{array}\right), \quad C=\left(\begin{array}{cc}
{[1]} & {[1]} \\
{[1]} & {[0]}
\end{array}\right), \quad D=\left(\begin{array}{cc}
{[0]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right) .
$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Problem 3. Prove that for a ring with unity, commutativity of addition follows from the other axioms. [Hint: simplify the expression $(1+1)(x+y)$ in two different ways.]

Problem 4. Find a direct product of cyclic groups that is isomorphic to G_{16} (multiplicative group of all invertible elements of the ring \mathbb{Z}_{16}).

Problem 5. Determine the last two digits of 303^{303}.
Problem 6. Find all integer solutions of the equation $21 x-32 y=4$.
Problem 7. Find all integer solutions of the equation $2 x+3 y+5 z=7$.
Problem 8. Solve the equation $2 x^{100}+x^{71}+x^{29}=0$ over the field \mathbb{Z}_{11}.
Problem 9. Factor a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field \mathbb{Z}_{7}.

Problem 10. Factor a polynomial $p(x)=x^{4}+x^{3}-2 x^{2}+3 x-1$ into irreducible factors over the field \mathbb{Q}. [Hint: since p has integer coefficients, there exists a factorization such that each factor has integer coefficients.]

