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Lecture 24:
Quaternions.
Field of quotients.



Complex numbers as an R-algebra

Complex numbers can be defined as a certain
2-dimensional algebra over the field R. We have
a distinguished basis 1,/. Hence every complex
number z is uniquely represented as z = x1 + yi,
where x,y € R.

Since multiplication is a bilinear function, it is
enough to define z - z, in the case 7,2 € {1,i}.
Weset 1-1=1,1-i=/-1=iand i-i=-1.
Because of bilinearity of the product, it is easy to
checkthat 1-z=2z-1, z1- 2 =2 -z and
(z1-2) - zz=21 (20 23).



Quaternions

The Hamilton quaternions H can be defined as a
certain 4-dimensional algebra over the field R. We
have a distinguished basis 1,/,/, k. Hence every
quaternion g is uniquely represented as
z=al+ bi + ¢j + dk, where a,b,c,d € R.

Since multiplication is a bilinear function, it is
enough to define q; - g for q1,q2 € {1,/,/, k}.
Weset 1-1=1,1-i=/-1=/,1-j=5-1=,
l-k=k-1=k, i-i=j-j=k-k=-1, [-j=k,
joi=—k, j-k=1i k-j=—i, k-i=j, i-k=—].

Theorem H is a non-commutative division ring.



Lemmal g-1=1.qg=gq forall g € H.

Proof. Since fi(q) =q-1, fr(q) =1-q and f3(q) = q are
all linear functions on Hi, it is enough to prove the equalities in
the case when g € {1,/,/, k}. In this case they follow from
the definition of multiplication.

Lemma 2 Forany a,b € R and g € H we have
(al) + (b1) = (a+ b)1, (al) - (b1) = (ab)1 and
(al) - g = agq.

In view of Lemma 2, we can identify any quaternion of the
form al with the real number a so that R C H. This also
allows to consider scalar multiplication on H as a special case
of multiplication of quaternions. In particular, we can use the
same notation g;qg, for both kinds of multiplication.



Lemma 3 Multiplication of quaternions is associative.

Idea of the proof. Since (¢192)gs and ¢q1(gq3) are both
trilinear functions of @i, g2, g3 € H, it is enough to prove the
equality (g192)gs = g1(g293) in the case when

d1,G2,93 € {17 i?.ja k}

For any quaternion q = a+ bi + ¢j + dk, we define the
conjugate quaternion by § = a — bi — ¢j — dk and the
modulus of g by |q| = Va2 + b2 + 2 + d2.

Lemma 4 qg = Gq = |q|? for all g € H.

Lemma 5 Every nonzero quaternion g has a multiplicative
inverse: ¢! = |q|727.



Rational quaternions are quaternions of the form
qg=a+ bi+ ¢j + dk, where a,b,c,d € Q. The
rational quaternions also form a division ring.

Integer quaternions are quaternions of the form
qg=a+ bi + ¢j + dk, where a,b,c,d € Z. The
integer quaternions form a ring. This ring has only
8 invertible elements (the units): +1, £/, +j, £k.
These 8 elements form a group under quaternion
multiplication, called the quaternion group and
denoted Q.

Theorem Any non-abelian group of order 8 is
isomorphic either to the dihedral group D, or to
the quaternion group Qs.



From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G. Moreover, if

G = (S), then any element of G is of the form b~'a, where

a,beS. Moreover, if G =(S), then the group G is unique

up to isomorphism.



Theorem Any finite semigroup with cancellation is
actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s € S there exists an

integer k > 2 such that sX =s.

Proof: Since S is finite, the sequence s, s?, s, ... contains

repetitions, i.e., sk =s™ forsome k>m>1. If m=1
then we are done. If m > 1 then s 1lsk—m+l = gm-lg
which implies sk=™+1 = 5.

Proof of the theorem: Take any s € S. By Lemma, we have
sk = s for some k > 2. Then e = s~ is the identity
element. Indeed, for any g € S we have sg = sg or,
equivalently, s(eg) = sg. After cancellation, eg = g.
Similarly, ge = g for all g € S. Finally, for any g € S there
is n>2 such that g" = g = ge. Then g"! = e, which
implies that g" 2 = g~ 1.



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)
field F containing R called the quotient field of R
(or the field of quotients). Any element of F is
of the form b~'a, where a,b € R. The field F is
unique up to isomorphism.

Examples. e The quotient field of Z is Q.

e The quotient field of R[X] is R(X).

e The quotient field of Z[v/2] = {m + n/2 |
m,neZ} is Q[V2] ={p+qv2|p,qcQ}



