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Lecture 24:

Quaternions.

Field of quotients.



Complex numbers as an R-algebra

Complex numbers can be defined as a certain

2-dimensional algebra over the field R. We have
a distinguished basis 1, i . Hence every complex

number z is uniquely represented as z = x1+ yi ,
where x , y ∈ R.

Since multiplication is a bilinear function, it is

enough to define z1 · z2 in the case z1, z2 ∈ {1, i}.
We set 1 · 1 = 1, 1 · i = i · 1 = i and i · i = −1.

Because of bilinearity of the product, it is easy to
check that 1 · z = z · 1, z1 · z2 = z2 · z1 and
(z1 · z2) · z3 = z1 · (z2 · z3).



Quaternions

The Hamilton quaternions H can be defined as a

certain 4-dimensional algebra over the field R. We
have a distinguished basis 1, i , j , k . Hence every
quaternion q is uniquely represented as

z = a1+ bi + cj + dk , where a, b, c , d ∈ R.

Since multiplication is a bilinear function, it is

enough to define q1 · q2 for q1, q2 ∈ {1, i , j , k}.
We set 1 · 1 = 1, 1 · i = i · 1 = i , 1 · j = j · 1 = j ,
1 · k = k · 1 = k , i · i = j · j = k · k = −1, i · j = k ,

j · i = −k , j · k = i , k · j = −i , k · i = j , i · k = −j .

Theorem H is a non-commutative division ring.



Lemma 1 q · 1 = 1 · q = q for all q ∈ H.

Proof. Since f1(q) = q · 1, f2(q) = 1 · q and f3(q) = q are
all linear functions on H, it is enough to prove the equalities in
the case when q ∈ {1, i , j , k}. In this case they follow from
the definition of multiplication.

Lemma 2 For any a, b ∈ R and q ∈ H we have
(a1) + (b1) = (a + b)1, (a1) · (b1) = (ab)1 and
(a1) · q = aq.

In view of Lemma 2, we can identify any quaternion of the
form a1 with the real number a so that R ⊂ H. This also
allows to consider scalar multiplication on H as a special case
of multiplication of quaternions. In particular, we can use the
same notation q1q2 for both kinds of multiplication.



Lemma 3 Multiplication of quaternions is associative.

Idea of the proof. Since (q1q2)q3 and q1(q2q3) are both
trilinear functions of q1, q2, q3 ∈ H, it is enough to prove the
equality (q1q2)q3 = q1(q2q3) in the case when
q1, q2, q3 ∈ {1, i , j , k}.

For any quaternion q = a + bi + cj + dk, we define the
conjugate quaternion by q̄ = a − bi − cj − dk and the
modulus of q by |q| =

√
a2 + b2 + c2 + d2.

Lemma 4 qq̄ = q̄q = |q|2 for all q ∈ H.

Lemma 5 Every nonzero quaternion q has a multiplicative
inverse: q−1 = |q|−2q̄.



Rational quaternions are quaternions of the form
q = a + bi + cj + dk , where a, b, c , d ∈ Q. The

rational quaternions also form a division ring.

Integer quaternions are quaternions of the form
q = a + bi + cj + dk , where a, b, c , d ∈ Z. The

integer quaternions form a ring. This ring has only
8 invertible elements (the units): ±1,±i ,±j ,±k .

These 8 elements form a group under quaternion
multiplication, called the quaternion group and

denoted Q8.

Theorem Any non-abelian group of order 8 is
isomorphic either to the dihedral group D4 or to

the quaternion group Q8.



From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G . Moreover, if
G = 〈S〉, then any element of G is of the form b−1a, where
a, b ∈ S . Moreover, if G = 〈S〉, then the group G is unique
up to isomorphism.



Theorem Any finite semigroup with cancellation is

actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)

field F containing R called the quotient field of R
(or the field of quotients). Any element of F is

of the form b−1a, where a, b ∈ R. The field F is
unique up to isomorphism.

Examples. • The quotient field of Z is Q.

• The quotient field of R[X ] is R(X ).
• The quotient field of Z[

√
2] = {m + n

√
2 |

m, n ∈ Z} is Q[
√
2] = {p + q

√
2 | p, q ∈ Q}.


