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Modern Algebra I

Lecture 26:
Modular arithmetic (continued).

RSA encryption.



Theorem The linear congruence ax ≡ bmod n has a
solution if and only if d = gcd(a, n) divides b. If this is the
case then the solution set consists of d congruence classes
modulo n that form a single congruence class modulo n/d .

Proof: If the congruence has a solution x , then ax = b + kn

for some k ∈ Z. Hence b = ax − kn, which is divisible by
gcd(a, n).

Conversely, assume that d divides b. Then the linear
congruence is equivalent to a′x ≡ b′ modm, where a′ = a/d ,
b′ = b/d and m = n/d . In other words, [a′]mX = [b′]m,
where X = [x ]m.

We have gcd(a′,m) = gcd(a/d , n/d) = gcd(a, n)/d = 1.
Hence the congruence class [a′]m is invertible. It follows that
all solutions x of the linear congruence form a single
congruence class modulo m, X = [a′]−1

m [b′]m. This
congruence class splits into d distinct congruence classes
modulo n = md .



Corollaries of Lagrange’s Theorem

Fermat’s Little Theorem If p is a prime number then
ap−1 ≡ 1mod p for any integer a that is not a multiple of p.

Proof: If a is not a multiple of p then [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
Lagrange’s Theorem implies that the order of [a]p in Gp

divides |Gp| = p − 1. It follows that [a]p−1
p = [1]p, which

means that ap−1 ≡ 1mod p.

Euler’s Theorem If n is a positive integer and φ(n) is the
number of integers between 1 and n coprime with n, then
aφ(n) ≡ 1mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1mod n means that [a]
φ(n)
n = [1]n. The

number a is coprime with n, i.e., gcd(a, n) = 1, implies that
the congruence class [a]n is in Gn. It remains to notice that
|Gn| = φ(n) and apply Lagrange’s Theorem.



Problem. Determine the last two digits of 32021.

The last two digits form the remainder under division by 100.

First let us compute φ(100). Since 100 = 22 · 52, an integer
k is coprime with 100 if and only if it is not divisible by 2 or 5.
Among integers from 1 to 100, there are 50 = 100/2 even
numbers and 20 = 100/5 numbers divisible by 5. Note that
some of them are divisible by both 2 and 5. These are exactly
numbers divisible by 10. There are 10 = 100/10 such
numbers. We conclude that φ(100)=100−50−20+10=40.

By Euler’s Theorem, 340 ≡ 1mod 100. Then

[32021] = [3]2021 = [3]40·50+21 = ([3]40)50 [3]21 =[3]21

= ([3]5)4 [3] = [243]4 [3] = [43]4 [3] = [(50− 7)2]2 [3]

= [72]2 [3] = [49]2 [3] = [(50−1)2] [3] = [12] [3] = [3].

Thus 32021 = ...03.



Public key encryption

Suppose that Alice wants to obtain some
confidential information from Bob, but they can

only communicate via a public channel (meaning all
that is sent may become available to third parties,
in particular, to Eve). How to organize secure

transfer of data in these circumstances?

The public key encryption is a solution to this

problem.



Public key encryption

The first step is coding. Bob digitizes the message and
breaks it into blocks b1, b2, . . . , bk so that each block can be
encoded by an element of a set X = {1, . . . ,K}, where K is
large. This results in a plaintext. Coding and decoding are
standard procedures known to public.

Next step is encryption. Alice sends a public key, which is
an invertible function f : X → Y , where Y is an equally large
set. Bob uses this function to produce an encrypted message
(ciphertext): f (b1), f (b2), . . . , f (bk). The ciphertext is then
sent to Alice.

The remaining steps are decryption and decoding. To
decrypt the encrypted message (and restore the plaintext),
Alice applies the inverse function f −1 to each block. Finally,
the plaintext is decoded to obtain the original message.



Trapdoor function
For a successful encryption, the function f has to be the
so-called trapdoor function, which means that f is easy to
compute while f −1 is hard to compute unless one knows
special information (“trapdoor”).

The usual approach is to have a family of fuctions fα : Xα→Xα

(where X ⊂ Xα) depending on a parameter α (or several
parameters). For any function in the family, the inverse also
belongs to the family. The parameter α is the trapdoor.

An additional step in exchange of information is key
generation. Alice generates a pair of keys, i.e., parameter
values, α and β such that the function fβ is the inverse of fα.
α is the public key, it is communicated to Bob (and anyone
else who wishes to send encrypted information to Alice).
β is the private key, only Alice knows it.

The encryption system is efficient if it is virtually impossible to
find β when one only knows α.



RSA system

The RSA (Rivest-Shamir-Adleman) system is a public key
system based on the modular arithmetic.

X = {1, 2, . . . ,K}, where K is a large number (say, 2128).

The key is a pair of integers (n, α), base and exponent.
The domain of the function fn,α is Gn, the set of invertible
congruence classes modulo n, regarded as a subset of
{0, 1, 2, . . . , n − 1}. We need to pick n so that the numbers
1, 2, . . . ,K are all coprime with n.

The function is given by fn,α(a) = aαmod n.

Key generation: First we pick two distinct primes p and q

greater than K and let n = pq. Secondly, we pick an integer
α coprime with φ(n) = (p − 1)(q − 1). Thirdly, we compute
β, the inverse of α modulo φ(n).

Now the public key is (n, α) while the private key is (n, β).



By construction, αβ = 1 + φ(n)k, k ∈ Z. Then

fn,β(fn,α(a)) = [a]αβn = [a]n([a]
φ(n)
n )k ,

which equals [a]n by Euler’s theorem. Thus fn,β = f −1
n,α .

Efficiency of the RSA system is based on impossibility of
efficient prime factorisation (at present time).

Example. Let us take p = 5, q = 23 so that the base is
n = pq = 115. Then φ(n) = (p − 1)(q − 1) = 4 · 22 = 88.

Exponent for the public key: α = 29. It is easy to observe
that −3 is the inverse of 29 modulo 88:

(−3) · 29 = −87 ≡ 1mod 88.

However the exponent is to be positive, so we take β = 85
(≡ −3mod 88).

Public key: (115, 29), private key: (115, 85).

Example of plaintext: 6/8 (two blocks).

Ciphertext: 26 (≡ 629mod 115), 58 (≡ 829mod 115).


