MATH 415

Modern Algebra I

Lecture 26:

Modular arithmetic (continued).
RSA encryption.

Theorem The linear congruence $a x \equiv b \bmod n$ has a solution if and only if $d=\operatorname{gcd}(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n / d.

Proof: If the congruence has a solution x, then $a x=b+k n$ for some $k \in \mathbb{Z}$. Hence $b=a x-k n$, which is divisible by $\operatorname{gcd}(a, n)$.
Conversely, assume that d divides b. Then the linear congruence is equivalent to $a^{\prime} x \equiv b^{\prime} \bmod m$, where $a^{\prime}=a / d$, $b^{\prime}=b / d$ and $m=n / d$. In other words, $\left[a^{\prime}\right]_{m} X=\left[b^{\prime}\right]_{m}$, where $X=[x]_{m}$.
We have $\operatorname{gcd}\left(a^{\prime}, m\right)=\operatorname{gcd}(a / d, n / d)=\operatorname{gcd}(a, n) / d=1$. Hence the congruence class $\left[a^{\prime}\right]_{m}$ is invertible. It follows that all solutions x of the linear congruence form a single congruence class modulo $m, X=\left[a^{\prime}\right]_{m}^{-1}\left[b^{\prime}\right]_{m}$. This congruence class splits into d distinct congruence classes modulo $n=m d$.

Corollaries of Lagrange's Theorem

Fermat's Little Theorem If p is a prime number then $a^{p-1} \equiv 1 \bmod p$ for any integer a that is not a multiple of p.
Proof: If a is not a multiple of p then $[a]_{p}$ is in G_{p}, the multiplicative group of invertible congruence classes modulo p. Lagrange's Theorem implies that the order of $[a]_{p}$ in G_{p} divides $\left|G_{p}\right|=p-1$. It follows that $[a]_{p}^{p-1}=[1]_{p}$, which means that $a^{p-1} \equiv 1 \bmod p$.

Euler's Theorem If n is a positive integer and $\phi(n)$ is the number of integers between 1 and n coprime with n, then $a^{\phi(n)} \equiv 1 \bmod n$ for any integer a coprime with n.
Proof: $a^{\phi(n)} \equiv 1 \bmod n$ means that $[a]_{n}^{\phi(n)}=[1]_{n}$. The number a is coprime with n, i.e., $\operatorname{gcd}(a, n)=1$, implies that the congruence class [a]n is in G_{n}. It remains to notice that $\left|G_{n}\right|=\phi(n)$ and apply Lagrange's Theorem.

Problem. Determine the last two digits of 3^{2021}.
The last two digits form the remainder under division by 100 .
First let us compute $\phi(100)$. Since $100=2^{2} \cdot 5^{2}$, an integer k is coprime with 100 if and only if it is not divisible by 2 or 5 . Among integers from 1 to 100 , there are $50=100 / 2$ even numbers and $20=100 / 5$ numbers divisible by 5 . Note that some of them are divisible by both 2 and 5 . These are exactly numbers divisible by 10 . There are $10=100 / 10$ such numbers. We conclude that $\phi(100)=100-50-20+10=40$.
By Euler's Theorem, $3^{40} \equiv 1 \bmod 100$. Then

$$
\begin{aligned}
{\left[3^{2021}\right] } & =[3]^{2021}=[3]^{40 \cdot 50+21}=\left([3]^{40}\right)^{50}[3]^{21}=[3]^{21} \\
& =\left([3]^{5}\right)^{4}[3]=[243]^{4}[3]=[43]^{4}[3]=\left[(50-7)^{2}\right]^{2}[3] \\
& =\left[7^{2}\right]^{2}[3]=[49]^{2}[3]=\left[(50-1)^{2}\right][3]=\left[1^{2}\right][3]=[3] .
\end{aligned}
$$

Thus $3^{2021}=\ldots 03$.

Public key encryption

Suppose that Alice wants to obtain some confidential information from Bob, but they can only communicate via a public channel (meaning all that is sent may become available to third parties, in particular, to Eve). How to organize secure transfer of data in these circumstances?

The public key encryption is a solution to this problem.

Public key encryption

The first step is coding. Bob digitizes the message and breaks it into blocks $b_{1}, b_{2}, \ldots, b_{k}$ so that each block can be encoded by an element of a set $X=\{1, \ldots, K\}$, where K is large. This results in a plaintext. Coding and decoding are standard procedures known to public.
Next step is encryption. Alice sends a public key, which is an invertible function $f: X \rightarrow Y$, where Y is an equally large set. Bob uses this function to produce an encrypted message (ciphertext): $f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{k}\right)$. The ciphertext is then sent to Alice.
The remaining steps are decryption and decoding. To decrypt the encrypted message (and restore the plaintext), Alice applies the inverse function f^{-1} to each block. Finally, the plaintext is decoded to obtain the original message.

Trapdoor function

For a successful encryption, the function f has to be the so-called trapdoor function, which means that f is easy to compute while f^{-1} is hard to compute unless one knows special information ("trapdoor").
The usual approach is to have a family of fuctions $f_{\alpha}: X_{\alpha} \rightarrow X_{\alpha}$ (where $X \subset X_{\alpha}$) depending on a parameter α (or several parameters). For any function in the family, the inverse also belongs to the family. The parameter α is the trapdoor
An additional step in exchange of information is key generation. Alice generates a pair of keys, i.e., parameter values, α and β such that the function f_{β} is the inverse of f_{α}. α is the public key, it is communicated to Bob (and anyone else who wishes to send encrypted information to Alice). β is the private key, only Alice knows it.
The encryption system is efficient if it is virtually impossible to find β when one only knows α.

RSA system

The RSA (Rivest-Shamir-Adleman) system is a public key system based on the modular arithmetic.
$X=\{1,2, \ldots, K\}$, where K is a large number (say, 2^{128}).
The key is a pair of integers (n, α), base and exponent. The domain of the function $f_{n, \alpha}$ is G_{n}, the set of invertible congruence classes modulo n, regarded as a subset of $\{0,1,2, \ldots, n-1\}$. We need to pick n so that the numbers $1,2, \ldots, K$ are all coprime with n.
The function is given by $f_{n, \alpha}(a)=a^{\alpha} \bmod n$.
Key generation: First we pick two distinct primes p and q greater than K and let $n=p q$. Secondly, we pick an integer α coprime with $\phi(n)=(p-1)(q-1)$. Thirdly, we compute β, the inverse of α modulo $\phi(n)$.
Now the public key is (n, α) while the private key is (n, β).

By construction, $\alpha \beta=1+\phi(n) k, k \in \mathbb{Z}$. Then

$$
f_{n, \beta}\left(f_{n, \alpha}(a)\right)=[a]_{n}^{\alpha \beta}=[a]_{n}\left([a]_{n}^{\phi(n)}\right)^{k}
$$

which equals $[a]_{n}$ by Euler's theorem. Thus $f_{n, \beta}=f_{n, \alpha}^{-1}$.
Efficiency of the RSA system is based on impossibility of efficient prime factorisation (at present time).

Example. Let us take $p=5, q=23$ so that the base is $n=p q=115$. Then $\phi(n)=(p-1)(q-1)=4 \cdot 22=88$.
Exponent for the public key: $\alpha=29$. It is easy to observe that -3 is the inverse of 29 modulo 88 :

$$
(-3) \cdot 29=-87 \equiv 1 \bmod 88
$$

However the exponent is to be positive, so we take $\beta=85$ ($\equiv-3 \bmod 88$).
Public key: $(115,29)$, private key: $(115,85)$.
Example of plaintext: 6/8 (two blocks).
Ciphertext: $26\left(\equiv 6^{29} \bmod 115\right), 58\left(\equiv 8^{29} \bmod 115\right)$.

