MATH 415
Modern Algebra I
Lecture 29:
Factorization of polynomials (continued).

Irreducible polynomials

Definition. A non-constant polynomial $f \in \mathbb{F}[x]$ over a field \mathbb{F} is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.

Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

If an irreducible polynomial f is divisible by another polynomial g, then g is either of degree zero or a scalar multiple of f.

Factorization of polynomials over a field

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorization $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorization is unique up to rearranging the factors and multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong induction on $\operatorname{deg}(f)$. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is an irreducible factorization of g and $q_{1} q_{2} \ldots q_{t}$ is an irreducible factorization of h, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is an irreducible factorization of gh .

The uniqueness is proved by (normal) induction on the number of irreducible factors. It is based on a (not so simple) fact: if an irreducible polynomial p divides a product of irreducible polynomials $q_{1} q_{2} \ldots q_{t}$ then one of the factors q_{1}, \ldots, q_{t} is a scalar multiple of p.

Factorization over \mathbb{C} and \mathbb{R}

Clearly, any polynomial $f \in \mathbb{F}[x]$ of degree 1 is irreducible over \mathbb{F}. Depending on the field \mathbb{F}, there might exist other irreducible polynomials as well.

Fundamental Theorem of Algebra Any non-constant polynomial over the field \mathbb{C} has a root.

Corollary 1 The only irreducible polynomials over the field \mathbb{C} of complex numbers are linear polynomials. Equivalently, any polynomial $f \in \mathbb{C}[x]$ of a positive degree n can be factorized as $f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$, where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$.

Corollary 2 The only irreducible polynomials over the field \mathbb{R} of real numbers are linear polynomials and quadratic polynomials without real roots.

Greatest common divisor

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$, a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over the field \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\operatorname{gcd}(f, g)$ as well.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form $u f+v g$, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f and g. Let $d(x)$ be any such polynomial of the least possible degree. It is easy to show that the remainder under division of any polynomial $h \in S$ by d belongs to S as well. By the choice of d, that remainder must be zero. Hence d divides every polynomial in S. In particular, d is a common divisor of f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d=\operatorname{gcd}(f, g)$.
Now assume d_{1} is another greatest common divisor of f and g. By definition, d_{1} divides d and d divides d_{1}. This is only possible if d and d_{1} are scalar multiples of each other.

Uniqueness of factorization

Proposition Let f be an irreducible polynomial and suppose that f divides a product $f_{1} f_{2}$. Then f divides at least one of the polynomials f_{1} and f_{2}.

Proof. Since f is irreducible, it follows that $\operatorname{gcd}\left(f, f_{1}\right)=f$ or 1. In the former case, f_{1} is divisible by f. In the latter case, we have $u f+v f_{1}=1$ for some polynomials u and v. Then $f_{2}=f_{2}\left(u f+v f_{1}\right)=\left(f_{2} u\right) f+v\left(f_{1} f_{2}\right)$, which is divisible by f.

Corollary 1 Let f be an irreducible polynomial and suppose that f divides a product of polynomials $f_{1} f_{2} \ldots f_{r}$. Then f divides at least one of the factors $f_{1}, f_{2}, \ldots, f_{r}$.

Corollary 2 Let f be an irreducible polynomial that divides a product $f_{1} f_{2} \ldots f_{r}$ of other irreducible polynomials. Then one of the factors $f_{1}, f_{2}, \ldots, f_{r}$ is a scalar multiple of f.

Examples of factorization

- $f(x)=x^{4}-1$ over \mathbb{R}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$.
The polynomial $x^{2}+1$ is irreducible over \mathbb{R}.
- $f(x)=x^{4}-1$ over \mathbb{C}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$
$=(x-1)(x+1)(x-i)(x+i)$.
- $f(x)=x^{4}-1$ over \mathbb{Z}_{5}.

It follows from Fermat's Little Theorem that any non-zero element of the field \mathbb{Z}_{5} is a root of the polynomial f. Hence f has 4 distinct roots. By the Unique Factorization Theorem,

$$
\begin{aligned}
f(x) & =(x-1)(x-2)(x-3)(x-4) \\
& =(x-1)(x+1)(x-2)(x+2) .
\end{aligned}
$$

- $f(x)=x^{4}-1 \quad$ over \mathbb{Z}_{7}.

Note that the polynomial $x^{4}-1$ can be considered over any field. Moreover, the expansion $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$ $=(x-1)(x+1)\left(x^{2}+1\right)$ holds over any field. It depends on the field whether the polynomial $g(x)=x^{2}+1$ is irreducible. Over the field \mathbb{Z}_{7}, we have $g(0)=1, g(\pm 1)=2, g(\pm 2)=5$ and $g(\pm 3)=10=3$. Hence g has no roots. For polynomials of degree 2 or 3 , this implies irreducibility.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{17}.

The polynomial $x^{2}+1$ has roots ± 4. It follows that $f(x)=(x-1)(x+1)\left(x^{2}+1\right)=(x-1)(x+1)(x-4)(x+4)$.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{2}.

For this field, we have $1+1=0$ so that $-1=1$. Hence $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$ $=(x-1)^{4}$.

Problem. Factor a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field \mathbb{Z}_{7}.

A quadratic or cubic polynomial is irreducible if and only if it has no zeros. Indeed, if such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is linear. This implies that the original polynomial has a zero.
Let us look for the zeros of $p(x): \quad p(0)=-2, \quad p(1)=-1$, $p(2)=0$. Hence $p(x)$ is divisible by $x-2$:

$$
x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)
$$

Now let us look for the zeros of the polynomial $q(x)=x^{2}-x+1$. Note that values 0 and 1 can be skipped this time. We obtain $q(2)=3, q(3)=7 \equiv 0 \bmod 7$. Hence $q(x)$ is divisible by $x-3: x^{2}-x+1=(x-3)(x+2)$.
Thus $x^{3}-3 x^{2}+3 x-2=(x-2)(x-3)(x+2)$ over the field \mathbb{Z}_{7}.

Problem. Factor $p(x)=x^{4}+x^{3}-2 x^{2}+3 x-1$ into irreducible factors over the field \mathbb{Q}.

Possible rational zeros of p are 1 and -1 . They are not zeros. Hence p is either irreducible over \mathbb{Q} or else it is factored as

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(a x^{2}+b x+c\right)\left(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}\right) .
$$

Since $p \in \mathbb{Z}[x]$, one can show that the factorization (if it exists) can be chosen so that all coefficients are integer. Additionally, we can assume that $a \geq 0$ (otherwise we could multiply each factor by -1). Equating the corresponding coefficients of the left-hand side and the right-hand side, we obtain $a a^{\prime}=1, a b^{\prime}+a^{\prime} b=1, a c^{\prime}+b b^{\prime}+a^{\prime} c=-2$, $b c^{\prime}+b^{\prime} c=3$ and $c c^{\prime}=-1$. The first and the last equations imply that $a=a^{\prime}=1, c=1$ or -1 , and $c^{\prime}=-c$. Then $b+b^{\prime}=1$ and $b b^{\prime}=-2$, which implies $\left\{b, b^{\prime}\right\}=\{2,-1\}$. Finally, $c=-1$ if $b=2$ and $c=1$ if $b=-1$. We can check that indeed

$$
x^{4}+x^{3}-2 x^{2}+3 x-1=\left(x^{2}+2 x-1\right)\left(x^{2}-x+1\right) .
$$

