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Modern Algebra I

Lecture 29:
Factorization of polynomials (continued).



Irreducible polynomials

Definition. A non-constant polynomial f ∈ F[x ]

over a field F is said to be irreducible over F if it
cannot be written as f = gh, where g , h ∈ F[x ],

and deg(g), deg(h) < deg(f ).

Irreducible polynomials are for multiplication of
polynomials what prime numbers are for

multiplication of integers.

If an irreducible polynomial f is divisible by another
polynomial g , then g is either of degree zero or a

scalar multiple of f .



Factorization of polynomials over a field

Theorem Any polynomial f ∈ F[x ] of positive degree admits
a factorization f = p1p2 . . . pk into irreducible factors over F.
This factorization is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f ). It is based on a simple fact: if
p1p2 . . . ps is an irreducible factorization of g and q1q2 . . . qt
is an irreducible factorization of h, then p1p2 . . . psq1q2 . . . qt
is an irreducible factorization of gh.

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q1q2 . . . qt then one of the factors
q1, . . . , qt is a scalar multiple of p.



Factorization over C and R

Clearly, any polynomial f ∈ F[x ] of degree 1 is irreducible
over F. Depending on the field F, there might exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra Any non-constant
polynomial over the field C has a root.

Corollary 1 The only irreducible polynomials over the field C

of complex numbers are linear polynomials. Equivalently, any
polynomial f ∈ C[x ] of a positive degree n can be factorized
as f (x) = c(x − α1)(x − α2) . . . (x − αn), where
c, α1, . . . , αn ∈ C and c 6= 0.

Corollary 2 The only irreducible polynomials over the field R

of real numbers are linear polynomials and quadratic
polynomials without real roots.



Greatest common divisor

Definition. Given non-zero polynomials f , g ∈ F[x ],
a greatest common divisor gcd(f , g) is a
polynomial over the field F such that (i) gcd(f , g)

divides f and g , and (ii) if any p ∈ F[x ] divides
both f and g , then it divides gcd(f , g) as well.

Theorem The polynomial gcd(f , g) exists and is
unique up to a scalar multiple. Moreover, it is a

non-zero polynomial of the least degree that can be
represented as uf + vg , where u, v ∈ F[x ].



Theorem The polynomial gcd(f , g) exists and is unique up
to a scalar multiple. Moreover, it is a non-zero polynomial of
the least degree that can be represented as uf + vg , where
u, v ∈ F[x ].

Proof: Let S denote the set of all polynomials of the form
uf + vg , where u, v ∈ F[x ]. The set S contains non-zero
polynomials, say, f and g . Let d(x) be any such polynomial
of the least possible degree. It is easy to show that the
remainder under division of any polynomial h ∈ S by d

belongs to S as well. By the choice of d , that remainder must
be zero. Hence d divides every polynomial in S . In
particular, d is a common divisor of f and g . Further, if any
p(x) ∈ F[x ] divides both f and g , then it also divides every
element of S . In particular, it divides d . Thus d = gcd(f , g).

Now assume d1 is another greatest common divisor of f and
g . By definition, d1 divides d and d divides d1. This is only
possible if d and d1 are scalar multiples of each other.



Uniqueness of factorization

Proposition Let f be an irreducible polynomial and suppose
that f divides a product f1f2. Then f divides at least one of
the polynomials f1 and f2.

Proof. Since f is irreducible, it follows that gcd(f , f1) = f or
1. In the former case, f1 is divisible by f . In the latter case,
we have uf + vf1 = 1 for some polynomials u and v . Then
f2 = f2(uf + vf1) = (f2u)f + v (f1f2), which is divisible by f .

Corollary 1 Let f be an irreducible polynomial and suppose
that f divides a product of polynomials f1f2 . . . fr . Then f

divides at least one of the factors f1, f2, . . . , fr .

Corollary 2 Let f be an irreducible polynomial that divides a
product f1f2 . . . fr of other irreducible polynomials. Then one
of the factors f1, f2, . . . , fr is a scalar multiple of f .



Examples of factorization

• f (x) = x4 − 1 over R.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).
The polynomial x2 + 1 is irreducible over R.

• f (x) = x4 − 1 over C.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1)
= (x − 1)(x + 1)(x − i)(x + i).

• f (x) = x4 − 1 over Z5.

It follows from Fermat’s Little Theorem that any non-zero
element of the field Z5 is a root of the polynomial f . Hence f

has 4 distinct roots. By the Unique Factorization Theorem,

f (x) = (x − 1)(x − 2)(x − 3)(x − 4)
= (x − 1)(x + 1)(x − 2)(x + 2).



• f (x) = x4 − 1 over Z7.

Note that the polynomial x4 − 1 can be considered over any
field. Moreover, the expansion x4 − 1 = (x2 − 1)(x2 + 1)
= (x − 1)(x + 1)(x2 + 1) holds over any field. It depends on
the field whether the polynomial g(x) = x2 + 1 is irreducible.
Over the field Z7, we have g(0) = 1, g(±1) = 2, g(±2) = 5
and g(±3) = 10 = 3. Hence g has no roots. For
polynomials of degree 2 or 3, this implies irreducibility.

• f (x) = x4 − 1 over Z17.

The polynomial x2 + 1 has roots ±4. It follows that
f (x) = (x − 1)(x +1)(x2 +1) = (x − 1)(x +1)(x − 4)(x + 4).

• f (x) = x4 − 1 over Z2.

For this field, we have 1 + 1 = 0 so that −1 = 1. Hence
x4 − 1 = (x2 − 1)(x2 + 1) = (x2 − 1)2 = (x − 1)2(x + 1)2

= (x − 1)4.



Problem. Factor a polynomial p(x) = x3 − 3x2 + 3x − 2
into irreducible factors over the field Z7.

A quadratic or cubic polynomial is irreducible if and only if it
has no zeros. Indeed, if such a polynomial splits into a
product of two non-constant polynomials, then at least one of
the factors is linear. This implies that the original polynomial
has a zero.

Let us look for the zeros of p(x): p(0) = −2, p(1) = −1,
p(2) = 0. Hence p(x) is divisible by x − 2:

x3 − 3x2 + 3x − 2 = (x − 2)(x2 − x + 1).

Now let us look for the zeros of the polynomial
q(x) = x2 − x + 1. Note that values 0 and 1 can be skipped
this time. We obtain q(2) = 3, q(3) = 7 ≡ 0mod 7. Hence
q(x) is divisible by x − 3: x2 − x + 1 = (x − 3)(x + 2).

Thus x3 − 3x2 + 3x − 2 = (x − 2)(x − 3)(x + 2) over the
field Z7.



Problem. Factor p(x) = x4 + x3 − 2x2 + 3x − 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and −1. They are not zeros.
Hence p is either irreducible over Q or else it is factored as

x4 + x3 − 2x2 + 3x − 1 = (ax2 + bx + c)(a′x2 + b′x + c ′).

Since p ∈ Z[x ], one can show that the factorization (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a ≥ 0 (otherwise we could
multiply each factor by −1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa′ = 1, ab′ + a′b = 1, ac ′ + bb′ + a′c = −2,
bc ′ + b′c = 3 and cc ′ = −1. The first and the last equations
imply that a = a′ = 1, c = 1 or −1, and c ′ = −c. Then
b + b′ = 1 and bb′ = −2, which implies {b, b′} = {2,−1}.
Finally, c = −1 if b = 2 and c = 1 if b = −1. We can
check that indeed

x4 + x3 − 2x2 + 3x − 1 = (x2 + 2x − 1)(x2 − x + 1).


