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Lecture 29:
Factorization of polynomials (continued).



Irreducible polynomials

Definition. A non-constant polynomial f € [F[x]
over a field IF is said to be irreducible over [F if it
cannot be written as f = gh, where g, h € F[x],
and deg(g), deg(h) < deg(f).

Irreducible polynomials are for multiplication of
polynomials what prime numbers are for
multiplication of integers.

If an irreducible polynomial f is divisible by another
polynomial g, then g is either of degree zero or a
scalar multiple of f.



Factorization of polynomials over a field

Theorem Any polynomial f € F[x]| of positive degree admits
a factorization f = pip» ... px into irreducible factors over F.
This factorization is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f). It is based on a simple fact: if

pip2 - .. ps is an irreducible factorization of g and g1q2 ...
is an irreducible factorization of h, then pip>...psq1q> ... q:
is an irreducible factorization of gh.

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q;1q,...q; then one of the factors
qi,...,q: is a scalar multiple of p.



Factorization over C and R

Clearly, any polynomial f € F[x]| of degree 1 is irreducible
over . Depending on the field IF, there might exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra Any non-constant
polynomial over the field C has a root.

Corollary 1 The only irreducible polynomials over the field C
of complex numbers are linear polynomials. Equivalently, any
polynomial f € C[x] of a positive degree n can be factorized
as f(x)=c(x —a1)(x — az)...(x — ), where
c,aq,...,a, € C and ¢ #0.

Corollary 2 The only irreducible polynomials over the field R
of real numbers are linear polynomials and quadratic
polynomials without real roots.



Greatest common divisor

Definition. Given non-zero polynomials f, g € F[x],
a greatest common divisor gcd(f, g) is a
polynomial over the field IF such that (i) gcd(f, g)
divides f and g, and (ii) if any p € F[x]| divides
both f and g, then it divides gcd(f, g) as well.

Theorem The polynomial gcd(f, g) exists and is
unique up to a scalar multiple. Moreover, it is a
non-zero polynomial of the least degree that can be
represented as uf + vg, where u,v € F[x].



Theorem The polynomial gcd(f, g) exists and is unique up
to a scalar multiple. Moreover, it is a non-zero polynomial of
the least degree that can be represented as uf + vg, where
u,v € Flx].

Proof: Let S denote the set of all polynomials of the form

uf + vg, where u,v € F[x]. The set S contains non-zero
polynomials, say, f and g. Let d(x) be any such polynomial
of the least possible degree. It is easy to show that the
remainder under division of any polynomial h € S by d
belongs to S as well. By the choice of d, that remainder must
be zero. Hence d divides every polynomial in S. In
particular, d is a common divisor of f and g. Further, if any
p(x) € F[x] divides both f and g, then it also divides every
element of S. In particular, it divides d. Thus d = gecd(f, g).

Now assume d; is another greatest common divisor of f and
g. By definition, d; divides d and d divides d;. This is only
possible if d and d; are scalar multiples of each other.



Uniqueness of factorization

Proposition Let f be an irreducible polynomial and suppose
that f divides a product fi,b. Then f divides at least one of
the polynomials f; and f;.

Proof. Since f is irreducible, it follows that ged(f, f;) = f or
1. In the former case, f; is divisible by f. In the latter case,

we have uf + vf; =1 for some polynomials v and v. Then
f, = fH(uf + vh) = (Hu)f 4+ v(ffy), which is divisible by f.

Corollary 1 Let f be an irreducible polynomial and suppose
that f divides a product of polynomials fif,...f,. Then f
divides at least one of the factors fi, f, ..., f.

Corollary 2 Let f be an irreducible polynomial that divides a
product fif,...f, of other irreducible polynomials. Then one
of the factors fi, f,...,f, is a scalar multiple of f.



Examples of factorization

o f(x)=x*—1 over R,

() = (@ = (2 +1) = (x = Dx + 1) + 1).
The polynomial x? + 1 is irreducible over R.

. f(x)—x4—1 over C.
X

21D+ 1)=(x—-1(x+1)(x*+1)
1)(x + 1) (x — ) (x+1).

o f(x)=x*—1 over Zs.

It follows from Fermat's Little Theorem that any non-zero
element of the field Zs is a root of the polynomial f. Hence f
has 4 distinct roots. By the Unique Factorization Theorem,
f(x)=(x—1)(x—2)(x—3)(x —4)
=(x—1)(x+1)(x —2)(x + 2).



o f(x)=x*—1 over Z;.

Note that the polynomial x* — 1 can be considered over any
field. Moreover, the expansion x* —1 = (x? — 1)(x*> + 1)

= (x — 1)(x + 1)(x*> + 1) holds over any field. It depends on
the field whether the polynomial g(x) = x? + 1 is irreducible.
Over the field Z7, we have g(0) =1, g(£1) =2, g(£2) =5
and g(43) = 10 = 3. Hence g has no roots. For
polynomials of degree 2 or 3, this implies irreducibility.

o f(x)=x"—1 over Z.

The polynomial x2+ 1 has roots &=4. It follows that
f(x)=(x—1D(x+1)(x*>+1) = (x—1)(x+1)(x — 4)(x + 4).

o f(x)=x*—1 over Z,.

For this field, we have 1 +1 =0 so that —1 = 1. Hence
xf—1=(2-1D(x*+1)=(x>-1)?2=(x —1)*(x +1)?
= (x — 1)*.



Problem. Factor a polynomial p(x) = x® — 3x? + 3x — 2
into irreducible factors over the field Z-.

A quadratic or cubic polynomial is irreducible if and only if it
has no zeros. Indeed, if such a polynomial splits into a
product of two non-constant polynomials, then at least one of
the factors is linear. This implies that the original polynomial
has a zero.

Let us look for the zeros of p(x): p(0) = -2, p(1) = —1,
p(2) = 0. Hence p(x) is divisible by x — 2:
x3—=3x2+3x—2=(x—2)(x*—x+1).

Now let us look for the zeros of the polynomial

g(x) = x> — x+ 1. Note that values 0 and 1 can be skipped
this time. We obtain g(2) =3, ¢(3) =7 =0mod7. Hence
g(x) is divisible by x —3: x> —x+ 1= (x — 3)(x + 2).

Thus x3 —3x%+3x —2 = (x —2)(x — 3)(x +2) over the
field Z5.



Problem. Factor p(x) = x* +x® —2x>+3x — 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and —1. They are not zeros.
Hence p is either irreducible over Q or else it is factored as

x*+x3—2x2+3x — 1= (ax® + bx + ¢)(a'x* + b'x + ¢').

Since p € Z[x], one can show that the factorization (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a > 0 (otherwise we could
multiply each factor by —1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa’ =1, abl +ab=1, ac’ + bb + d'c = -2,

bc’ + b'c =3 and cc’ = —1. The first and the last equations
imply that a=a' =1, c=1 or —1,and ¢ = —c. Then
b+ b =1 and bb' = —2, which implies {b,b'} = {2, —1}.
Finallyy, c=—-1if b=2 and c=1 if b=—-1. Wecan
check that indeed

x4+ x3 -2 +3x —1=(x*+2x—1)(x®* — x + 1).



