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Lecture 32:
Factor rings.
Homomorphisms of rings.



Ideals

Definition. Suppose R is a ring. We say that a subset S C R
is a left ideal of R if

e S is a subgroup of the additive group R,

e S is closed under left multiplication by any elements of R:
seS, xeER = xse€8.

We say that a subset S C R is a right ideal of R if

e S is a subgroup of the additive group R,

e S is closed under right multiplication by any elements of R:
seS, xeR = sxe8.

All left ideals and right ideals of the ring R are also called
one-sided ideals. A two-sided ideal (or simply an ideal) of
the ring R is a subset S C R that is both a left ideal and a
right ideal. That is,

e S is a subgroup of the additive group R,

e S is closed under multiplication by any elements of R:
s€S, xeR — xs,sx€eS.



Factor space

Let X be a nonempty set and ~ be an equivalence relation on
X. Given an element x € X, the equivalence class of x,
denoted [x]. or simply [x], is the set of all elements of X that
are equivalent (i.e., related by ~) to x:

[x]. ={y € X |y ~x}.

Theorem Equivalence classes of the relation ~ form a
partition of the set X.

The set of all equivalence classes of ~ is denoted X/~ and
called the factor space (or quotient space) of X by the
relation ~.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/~.



Factor ring

Let R be a ring. Given an equivalence relation ~ on R, we
say that the relation ~ is compatible with the operations
(addition and multiplication) in R if for any r1, r, s, € R,

rn~nrn and Si~S = n+si~n+s and rnsy ~ nS.

If this is the case, we can define operations on the factor space
R/~ by [r]+[s]=[r+s] and [r][s] = [rs] forall r,se R
(compatibility is required so that the operations are defined
uniquely).

Then R/~ is also a ring called the factor ring (or quotient
ring) of R.

If the ring R is commutative, then so is the factor ring R/~.
If R has the unity 1, then R/~ has the unity [1].



Question. When is an equivalence relation ~ on a ring R
compatible with the operations?

Let R be a ring and assume that an equivalence relation ~ on
R is compatible with the operations (so that the factor space
R/~ is also the factor ring).

Since R is an additive group and the relation ~ is compatible
with addition, the factor ring R/~ is a factor group in the
first place. As shown in group theory, it follows that

e | =[0]., the equivalence class of the zero, is a normal
subgroup of R, and

e R/~ = R/I, which means that every equivalence class is
acoset of /, [rl.=r+1 forall reR.

The fact that the subgroup / is normal is redundant here.
Indeed, the additive group R is abelian and hence all
subgroups are normal.



Lemma The subgroup / is a two-sided ideal in R.

Proof: Let a€ | and x € R. We need to show that

xa, ax € I. Since | = [0]., we have a ~ 0. By reflexivity,
x ~ x. By compatibility with multiplication, xa ~ x0 =0
and ax ~0x =0. Thus xa, ax € I.

Theorem If | is a two-sided ideal of a ring R, then the factor
group R/l is, indeed, a factor ring.

Proof: Let ~ be a relation on R such that a; ~ a, if and
only if a; € a4+ /. Then ~ is an equivalence relation
compatible with addition, and the factor space R/~ coincides
with the factor group R/I. To prove that R/I is a factor
ring, we only need to show that the relation ~ is compatible
with multiplication. Suppose a; ~ a> and b; ~ b,. Then
ai=a>+ h and by = b, + h' for some h, W € I. We obtain
albl = (32 + h)(b2 + h,) = 32b2 + (azh/ + hb2 + hh/) Since /
is a two-sided ideal, the products a>h’, hb, and hh' are
contained in /, and so is their sum. Thus a;b; ~ a>b,.



Homomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called a homomorphism of rings if f(r;+r) = f(rn)+f(r)
and f(rnrn)=f(n)f(r) forall n,rnecR.

That is, f is a homomorphism of the binary structure (R, +)
to (R, +) and, simultaneously, a homomorphism of the binary
structure (R,-) to (R',-). In particular, f is a homomorphism
of additive groups, which implies the following properties:

e f(0)=0,

o f(—r)=—f(r) forall reR,

e if H is an additive subgroup of R then f(H) is an additive
subgroup of R/,

e if H' is an additive subgroup of R’ then f=*(H') is an
additive subgroup of R,

e 71(0) is an additive subgroup of R, called the kernel of
f and denoted Ker(f).



More properties of homomorphisms

Let f: R — R’ be a homomorphism of rings.

e If H is a subring of R, then f(H) is a subring of R’.

We already know that f(H) is an additive subgroup of R’. It
remains to show that it is closed under multiplication in R'.
Let r{,ry; € f(H). Then r{ =f(r1) and r} = f(r,) for some
r,rn € H. Hence riry = f(r)f(rn) = f(rir2), which is in
f(H) since H is closed under multiplication in R.

e If H'is a subring of R’, then f~'(H') is a subring of R.

We already know that f~1(H’) is an additive subgroup of R.
It remains to show that it is closed under multiplication in R.
Let i, € fY(H'), thatis, f(r),f(r) € H. Then
f(rir) = f(rn)f(ry) is in H' since H' is closed under
multiplication in R'. Hence rir, € f~}(H').



More properties of homomorphisms
o If H' is a left ideal in R', then f~1(H') is a left
ideal in R.

We already know that f~1(H’) is a subring of R. It remains
to show that r € R and a € f~*(H') imply ra e f~1(H').
We have f(a) € H'. Then f(ra) = f(r)f(a) is in H' since H’
is a left ideal in R’. In other words, ra € f=(H').

e If H'is a right ideal in R, then f~1(H’) is a
right ideal in R.

o If H"is a two-sided ideal in R’, then f~1(H') is
a two-sided ideal in R.

e The kernel Ker(f) is a two-sided ideal in R.
Indeed, Ker(f) is the pre-image of the trivial ideal {0} in R’



More properties of homomorphisms

e If an element a € R is idempotent in R (that is, a®> = a)
then f(a) is idempotent in R’

Indeed, (f(a))? = f(a%) = f(a).
e If 1g is the unity in R then f(1g) is the unity in f(R).

Let r' € f(R). Then r' = f(r) for some r € R. We obtain
r'f(lg) = f(r)f(1gr) = f(r-1g) = f(r) = r and
F(Lr)r" = f(1R)f(r) = f(1g - r) = f(r) =

e If 1g is the unity in R and R’ is a domain with unity, then
either f(1g) is the unity in R’ or else the homomorphism f is
identically zero.

If f(1g) =0 then f is identically zero: f(r) = f(r-1g) =

f(r)f(1g) =f(r)-0=0 for all r € R. Otherwise f(1g) is a
nonzero idempotent element. We know that in a domain with
unity, the only idempotent elements are the zero and the unity.



