MATH 415

Modern Algebra I
Lecture 32:
Factor rings.
Homomorphisms of rings.

Ideals

Definition. Suppose R is a ring. We say that a subset $S \subset R$ is a left ideal of R if

- S is a subgroup of the additive group R,
- S is closed under left multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow x s \in S$.
We say that a subset $S \subset R$ is a right ideal of R if
- S is a subgroup of the additive group R,
- S is closed under right multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow s x \in S$.
All left ideals and right ideals of the ring R are also called one-sided ideals. A two-sided ideal (or simply an ideal) of the ring R is a subset $S \subset R$ that is both a left ideal and a right ideal. That is,
- S is a subgroup of the additive group R,
- S is closed under multiplication by any elements of R :
$s \in S, x \in R \Longrightarrow x s, s x \in S$.

Factor space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the equivalence class of x, denoted $[x]_{\sim}$ or simply $[x]$, is the set of all elements of X that are equivalent (i.e., related by \sim) to x :

$$
[x]_{\sim}=\{y \in X \mid y \sim x\} .
$$

Theorem Equivalence classes of the relation \sim form a partition of the set X.

The set of all equivalence classes of \sim is denoted X / \sim and called the factor space (or quotient space) of X by the relation \sim.

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the factor space X / \sim.

Factor ring

Let R be a ring. Given an equivalence relation \sim on R, we say that the relation \sim is compatible with the operations (addition and multiplication) in R if for any $r_{1}, r_{2}, s_{1}, s_{2} \in R$,

$$
r_{1} \sim r_{2} \text { and } s_{1} \sim s_{2} \Longrightarrow r_{1}+s_{1} \sim r_{2}+s_{2} \text { and } r_{1} s_{1} \sim r_{2} s_{2}
$$

If this is the case, we can define operations on the factor space R / \sim by $[r]+[s]=[r+s]$ and $[r][s]=[r s]$ for all $r, s \in R$ (compatibility is required so that the operations are defined uniquely).

Then R / \sim is also a ring called the factor ring (or quotient ring) of R.

If the ring R is commutative, then so is the factor ring R / \sim. If R has the unity 1 , then R / \sim has the unity [1].

Question. When is an equivalence relation \sim on a ring R compatible with the operations?

Let R be a ring and assume that an equivalence relation \sim on R is compatible with the operations (so that the factor space R / \sim is also the factor ring).

Since R is an additive group and the relation \sim is compatible with addition, the factor ring R / \sim is a factor group in the first place. As shown in group theory, it follows that

- $I=[0]_{\sim}$, the equivalence class of the zero, is a normal subgroup of R, and
- $R / \sim=R / I$, which means that every equivalence class is a coset of $I,[r]_{\sim}=r+I$ for all $r \in R$.

The fact that the subgroup $/$ is normal is redundant here. Indeed, the additive group R is abelian and hence all subgroups are normal.

Lemma The subgroup I is a two-sided ideal in R.
Proof: Let $a \in I$ and $x \in R$. We need to show that $x a, a x \in I$. Since $I=[0]_{\sim}$, we have $a \sim 0$. By reflexivity, $x \sim x$. By compatibility with multiplication, $x a \sim x 0=0$ and $a x \sim 0 x=0$. Thus $x a, a x \in I$.

Theorem If I is a two-sided ideal of a ring R, then the factor group R / I is, indeed, a factor ring.
Proof: Let \sim be a relation on R such that $a_{1} \sim a_{2}$ if and only if $a_{1} \in a_{2}+I$. Then \sim is an equivalence relation compatible with addition, and the factor space R / \sim coincides with the factor group R / I. To prove that R / I is a factor ring, we only need to show that the relation \sim is compatible with multiplication. Suppose $a_{1} \sim a_{2}$ and $b_{1} \sim b_{2}$. Then $a_{1}=a_{2}+h$ and $b_{1}=b_{2}+h^{\prime}$ for some $h, h^{\prime} \in I$. We obtain $a_{1} b_{1}=\left(a_{2}+h\right)\left(b_{2}+h^{\prime}\right)=a_{2} b_{2}+\left(a_{2} h^{\prime}+h b_{2}+h h^{\prime}\right)$. Since $/$ is a two-sided ideal, the products $a_{2} h^{\prime}, h b_{2}$ and $h h^{\prime}$ are contained in I, and so is their sum. Thus $a_{1} b_{1} \sim a_{2} b_{2}$.

Homomorphism of rings

Definition. Let R and R^{\prime} be rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism of rings if $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

That is, f is a homomorphism of the binary structure $(R,+)$ to ($R^{\prime},+$) and, simultaneously, a homomorphism of the binary structure (R, \cdot) to $\left(R^{\prime}, \cdot\right)$. In particular, f is a homomorphism of additive groups, which implies the following properties:

- $f(0)=0$,
- $f(-r)=-f(r)$ for all $r \in R$,
- if H is an additive subgroup of R then $f(H)$ is an additive subgroup of R^{\prime},
- if H^{\prime} is an additive subgroup of R^{\prime} then $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R,
- $f^{-1}(0)$ is an additive subgroup of R, called the kernel of f and denoted $\operatorname{Ker}(f)$.

More properties of homomorphisms

Let $f: R \rightarrow R^{\prime}$ be a homomorphism of rings.

- If H is a subring of R, then $f(H)$ is a subring of R^{\prime}.

We already know that $f(H)$ is an additive subgroup of R^{\prime}. It remains to show that it is closed under multiplication in R^{\prime}. Let $r_{1}^{\prime}, r_{2}^{\prime} \in f(H)$. Then $r_{1}^{\prime}=f\left(r_{1}\right)$ and $r_{2}^{\prime}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in H$. Hence $r_{1}^{\prime} r_{2}^{\prime}=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right)$, which is in $f(H)$ since H is closed under multiplication in R.

- If H^{\prime} is a subring of R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a subring of R. We already know that $f^{-1}\left(H^{\prime}\right)$ is an additive subgroup of R. It remains to show that it is closed under multiplication in R. Let $r_{1}, r_{2} \in f^{-1}\left(H^{\prime}\right)$, that is, $f\left(r_{1}\right), f\left(r_{2}\right) \in H^{\prime}$. Then $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ is in H^{\prime} since H^{\prime} is closed under multiplication in R^{\prime}. Hence $r_{1} r_{2} \in f^{-1}\left(H^{\prime}\right)$.

More properties of homomorphisms

- If H^{\prime} is a left ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a left ideal in R.
We already know that $f^{-1}\left(H^{\prime}\right)$ is a subring of R. It remains to show that $r \in R$ and $a \in f^{-1}\left(H^{\prime}\right)$ imply $r a \in f^{-1}\left(H^{\prime}\right)$. We have $f(a) \in H^{\prime}$. Then $f(r a)=f(r) f(a)$ is in H^{\prime} since H^{\prime} is a left ideal in R^{\prime}. In other words, $r a \in f^{-1}\left(H^{\prime}\right)$.
- If H^{\prime} is a right ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a right ideal in R.
- If H^{\prime} is a two-sided ideal in R^{\prime}, then $f^{-1}\left(H^{\prime}\right)$ is a two-sided ideal in R.
- The kernel $\operatorname{Ker}(f)$ is a two-sided ideal in R. Indeed, $\operatorname{Ker}(f)$ is the pre-image of the trivial ideal $\{0\}$ in R^{\prime}.

More properties of homomorphisms

- If an element $a \in R$ is idempotent in R (that is, $a^{2}=a$) then $f(a)$ is idempotent in R^{\prime}.
Indeed, $(f(a))^{2}=f\left(a^{2}\right)=f(a)$.
- If 1_{R} is the unity in R then $f\left(1_{R}\right)$ is the unity in $f(R)$.

Let $r^{\prime} \in f(R)$. Then $r^{\prime}=f(r)$ for some $r \in R$. We obtain $r^{\prime} f\left(1_{R}\right)=f(r) f\left(1_{R}\right)=f\left(r \cdot 1_{R}\right)=f(r)=r^{\prime}$ and $f\left(1_{R}\right) r^{\prime}=f\left(1_{R}\right) f(r)=f\left(1_{R} \cdot r\right)=f(r)=r^{\prime}$.

- If 1_{R} is the unity in R and R^{\prime} is a domain with unity, then either $f\left(1_{R}\right)$ is the unity in R^{\prime} or else the homomorphism f is identically zero.
If $f\left(1_{R}\right)=0$ then f is identically zero: $f(r)=f\left(r \cdot 1_{R}\right)=$ $f(r) f\left(1_{R}\right)=f(r) \cdot 0=0$ for all $r \in R$. Otherwise $f\left(1_{R}\right)$ is a nonzero idempotent element. We know that in a domain with unity, the only idempotent elements are the zero and the unity.

