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Lecture 32:

Factor rings.

Homomorphisms of rings.



Ideals

Definition. Suppose R is a ring. We say that a subset S ⊂ R

is a left ideal of R if
• S is a subgroup of the additive group R ,
• S is closed under left multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ xs ∈ S .

We say that a subset S ⊂ R is a right ideal of R if
• S is a subgroup of the additive group R ,
• S is closed under right multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ sx ∈ S .

All left ideals and right ideals of the ring R are also called
one-sided ideals. A two-sided ideal (or simply an ideal) of
the ring R is a subset S ⊂ R that is both a left ideal and a
right ideal. That is,
• S is a subgroup of the additive group R ,
• S is closed under multiplication by any elements of R :

s ∈ S , x ∈ R =⇒ xs, sx ∈ S .



Factor space

Let X be a nonempty set and ∼ be an equivalence relation on
X . Given an element x ∈ X , the equivalence class of x ,
denoted [x ]∼ or simply [x ], is the set of all elements of X that
are equivalent (i.e., related by ∼) to x :

[x ]∼ = {y ∈ X | y ∼ x}.

Theorem Equivalence classes of the relation ∼ form a
partition of the set X .

The set of all equivalence classes of ∼ is denoted X/∼ and
called the factor space (or quotient space) of X by the
relation ∼.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the factor space X/∼.



Factor ring

Let R be a ring. Given an equivalence relation ∼ on R , we
say that the relation ∼ is compatible with the operations
(addition and multiplication) in R if for any r1, r2, s1, s2 ∈ R ,

r1 ∼ r2 and s1 ∼ s2 =⇒ r1+s1 ∼ r2+s2 and r1s1 ∼ r2s2.

If this is the case, we can define operations on the factor space
R/∼ by [r ] + [s] = [r + s] and [r ][s] = [rs] for all r , s ∈ R

(compatibility is required so that the operations are defined
uniquely).

Then R/∼ is also a ring called the factor ring (or quotient
ring) of R .

If the ring R is commutative, then so is the factor ring R/∼.
If R has the unity 1, then R/∼ has the unity [1].



Question. When is an equivalence relation ∼ on a ring R

compatible with the operations?

Let R be a ring and assume that an equivalence relation ∼ on
R is compatible with the operations (so that the factor space
R/∼ is also the factor ring).

Since R is an additive group and the relation ∼ is compatible
with addition, the factor ring R/∼ is a factor group in the
first place. As shown in group theory, it follows that
• I = [0]∼, the equivalence class of the zero, is a normal

subgroup of R , and
• R/∼ = R/I , which means that every equivalence class is

a coset of I , [r ]∼ = r + I for all r ∈ R .

The fact that the subgroup I is normal is redundant here.
Indeed, the additive group R is abelian and hence all
subgroups are normal.



Lemma The subgroup I is a two-sided ideal in R .

Proof: Let a ∈ I and x ∈ R . We need to show that
xa, ax ∈ I . Since I = [0]∼, we have a ∼ 0. By reflexivity,
x ∼ x . By compatibility with multiplication, xa ∼ x0 = 0
and ax ∼ 0x = 0. Thus xa, ax ∈ I .

Theorem If I is a two-sided ideal of a ring R , then the factor
group R/I is, indeed, a factor ring.

Proof: Let ∼ be a relation on R such that a1 ∼ a2 if and
only if a1 ∈ a2 + I . Then ∼ is an equivalence relation
compatible with addition, and the factor space R/∼ coincides
with the factor group R/I . To prove that R/I is a factor
ring, we only need to show that the relation ∼ is compatible
with multiplication. Suppose a1 ∼ a2 and b1 ∼ b2. Then
a1 = a2 + h and b1 = b2 + h′ for some h, h′ ∈ I . We obtain
a1b1 = (a2 + h)(b2 + h′) = a2b2 + (a2h

′ + hb2 + hh′). Since I

is a two-sided ideal, the products a2h
′, hb2 and hh′ are

contained in I , and so is their sum. Thus a1b1 ∼ a2b2.



Homomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called a homomorphism of rings if f (r1 + r2) = f (r1) + f (r2)
and f (r1r2) = f (r1)f (r2) for all r1, r2 ∈ R .

That is, f is a homomorphism of the binary structure (R ,+)
to (R ′,+) and, simultaneously, a homomorphism of the binary
structure (R , ·) to (R ′, ·). In particular, f is a homomorphism
of additive groups, which implies the following properties:

• f (0) = 0,
• f (−r) = −f (r) for all r ∈ R ,
• if H is an additive subgroup of R then f (H) is an additive

subgroup of R ′,
• if H ′ is an additive subgroup of R ′ then f −1(H ′) is an

additive subgroup of R ,
• f −1(0) is an additive subgroup of R , called the kernel of

f and denoted Ker(f ).



More properties of homomorphisms

Let f : R → R ′ be a homomorphism of rings.

• If H is a subring of R , then f (H) is a subring of R ′.

We already know that f (H) is an additive subgroup of R ′. It
remains to show that it is closed under multiplication in R ′.
Let r ′

1
, r ′

2
∈ f (H). Then r ′

1
= f (r1) and r ′

2
= f (r2) for some

r1, r2 ∈ H. Hence r ′
1
r ′
2
= f (r1)f (r2) = f (r1r2), which is in

f (H) since H is closed under multiplication in R .

• If H ′ is a subring of R ′, then f −1(H ′) is a subring of R .

We already know that f −1(H ′) is an additive subgroup of R .
It remains to show that it is closed under multiplication in R .
Let r1, r2 ∈ f −1(H ′), that is, f (r1), f (r2) ∈ H ′. Then
f (r1r2) = f (r1)f (r2) is in H ′ since H ′ is closed under
multiplication in R ′. Hence r1r2 ∈ f −1(H ′).



More properties of homomorphisms

• If H ′ is a left ideal in R ′, then f −1(H ′) is a left
ideal in R.

We already know that f −1(H ′) is a subring of R . It remains
to show that r ∈ R and a ∈ f −1(H ′) imply ra ∈ f −1(H ′).
We have f (a) ∈ H ′. Then f (ra) = f (r)f (a) is in H ′ since H ′

is a left ideal in R ′. In other words, ra ∈ f −1(H ′).

• If H ′ is a right ideal in R ′, then f −1(H ′) is a
right ideal in R.

• If H ′ is a two-sided ideal in R ′, then f −1(H ′) is
a two-sided ideal in R.

• The kernel Ker(f ) is a two-sided ideal in R.

Indeed, Ker(f ) is the pre-image of the trivial ideal {0} in R ′.



More properties of homomorphisms

• If an element a ∈ R is idempotent in R (that is, a2 = a)
then f (a) is idempotent in R ′.

Indeed, (f (a))2 = f (a2) = f (a).

• If 1R is the unity in R then f (1R) is the unity in f (R).

Let r ′ ∈ f (R). Then r ′ = f (r) for some r ∈ R . We obtain
r ′f (1R) = f (r)f (1R) = f (r · 1R) = f (r) = r ′ and
f (1R)r

′ = f (1R)f (r) = f (1R · r) = f (r) = r ′.

• If 1R is the unity in R and R ′ is a domain with unity, then
either f (1R) is the unity in R ′ or else the homomorphism f is
identically zero.

If f (1R) = 0 then f is identically zero: f (r) = f (r · 1R) =
f (r)f (1R) = f (r) · 0 = 0 for all r ∈ R . Otherwise f (1R) is a
nonzero idempotent element. We know that in a domain with
unity, the only idempotent elements are the zero and the unity.


