
MATH 415

Modern Algebra I

Lecture 39:
Review for the final exam.



Topics for the final exam

Group theory:

• Binary operations

• Groups, semigroups
• Subgroups, cyclic groups

• Groups of permutations
• Cosets, Lagrange’s theorem

• Direct product of groups

• Factor groups
• Homomorphisms of groups

• Classification of abelian groups
• Group actions

Fraleigh/Brand: Sections 0–14



Topics for the final exam

Theory of rings and fields:

• Rings and fields

• Integral domains
• Modular arithmetic

• Rings of polynomials
• Factorization of polynomials

• Ideals

• Factor rings
• Homomorphisms of rings

• Prime and maximal ideals
• Euclidean algorithm

Fraleigh/Brand: Sections 22–24, 26–28, 30–32.



Sample problems

Problem 1. For any positive integer n let nZ denote the set
of all integers divisible by n.

(i) Does the set 3Z ∪ 4Z ∪ 7Z form a semigroup under
addition? Does it form a group?

(ii) Does the set 3Z ∪ 4Z ∪ 7Z form a semigroup under
multiplication? Does it form a group?

Problem 2. Consider a relation ∼ on a group G defined as
follows. For any g , h ∈ G we let g ∼ h if and only if g is
conjugate to h, which means that g = xhx−1 for some x ∈ G

(where x may depend on g and h). Show that ∼ is an
equivalence relation on G .

Problem 3. Find all subgroups of the group G15 (multiplica-
tive group of invertible congruence classes modulo 15.)



Sample problems
Problem 4. Let π = (1 2)(2 3)(3 4)(4 5)(5 6) and
σ = (1 2 3)(2 3 4)(3 4 5)(4 5 6). Find the order and the sign of
the following permutations: π, σ, πσ, and σπ.

Problem 5. Let G be a group. Suppose H is a subgroup of
G of finite index (G : H) and K is a subgroup of H of finite
index (H : K ). Prove that K is a subgroup of finite index in
G and, moreover, (G : K ) = (G : H)(H : K ).

Problem 6. Let G be the group of all symmetries of a regular
tetrahedron T . The group G naturally acts on the set of
vertices of T , the set of edges of T , and the set of faces of T .

(i) Show that each of the three actions is transitive.
(ii) Show that the stabilizer of any vertex is isomorphic to

the symmetric group S3.
(iii) Show that the stabilizer of any edge is isomorphic to

the Klein 4-group Z2 × Z2.
(iv) Show that the stabilizer of any face is isomorphic to S3.



Sample problems

Problem 7. Let S be a nonempty set and P(S) be the set
of all subsets of S . (i) Prove that P(S) with the operations
of symmetric difference △ (as addition) and intersection ∩
(as multiplication) is a commutative ring with unity.
(ii) Prove that the ring P(S) is isomorphic to the ring of

functions F(S ,Z2).

Problem 8. Solve a system of congruences (find all
solutions): 





x ≡ 2mod 5,
x ≡ 3mod 6,
x ≡ 6mod 7.

Problem 9. Find all integer solutions of a system
{

2x + 5y − z = 1,
x − 2y + 3z = 2.



Sample problems

Problem 10. Factor a polynomial
p(x) = x4 − 2x3 − x2 − 2x + 1 into irreducible factors over
the fields Q, R, C, Z5 and Z7.

Problem 11. Let

M =

{(

x 0
y z

)

∣

∣

∣
x , y , z ∈ R

}

, J =

{(

0 0
y 0

)

∣

∣

∣
y ∈ R

}

.

(i) Show that M is a subring of the matrix ring M2,2(R).
(ii) Show that J is a two-sided ideal in M .
(iii) Show that the factor ring M/J is isomorphic to R× R.

Problem 12. The polynomial f (x) = x6+3x5−5x3+3x −1
has how many distinct complex roots?



Problem 1. For any positive integer n let nZ denote the set
of all integers divisible by n.

(i) Does the set 3Z ∪ 4Z ∪ 7Z form a semigroup under
addition? Does it form a group?

(ii) Does the set 3Z ∪ 4Z ∪ 7Z form a semigroup under
multiplication? Does it form a group?

The set S = 3Z ∪ 4Z ∪ 7Z consists of all integers divisible by
at least one of the numbers 3, 4 and 7. This set is not closed
under addition. For example, the numbers 4 and 7 belong to
S while their sum 4 + 7 = 11 does not. Therefore S is
neither a semigroup nor a group with respect to addition.

Each of the sets 3Z, 4Z and 7Z is closed under multiplication
by any integer. Hence their union S is also closed under
multiplication by any integer. In particular, S is a semigroup
with respect to multiplication. It is not a group since it does
not contain 1 (and 1 is the only number that can be the
multiplicative identity element unless S = {0}).



Problem 2. Consider a relation ∼ on a group G defined as
follows. For any g , h ∈ G we let g ∼ h if and only if g is
conjugate to h, which means that g = xhx−1 for some x ∈ G

(where x may depend on g and h). Show that ∼ is an
equivalence relation on G .

We have to show that the relation ∼ is reflexive, symmetric
and transitive.

Reflexivity. g ∼ g since g = ege−1, where e is the identity
element.

Symmetry. Assume g ∼ h, that is, g = xhx−1 for some
x ∈ G . Then h = x−1gx = x−1g(x−1)−1 = x1gx

−1

1
, where

x1 = x−1. Hence h ∼ g .

Transitivity. Assume g ∼ h and h ∼ k, that is,
g = x1hx

−1

1
and h = x2kx

−1

2
for some x1, x2 ∈ G . Then

g = x1(x2kx
−1

2
)x−1

1
= (x1x2)k(x

−1

2
x−1

1
) = (x1x2)k(x1x2)

−1

= xkx−1, where x = x1x2. Hence g ∼ k.



Problem 3. Find all subgroups of the group G15 (multiplica-
tive group of invertible congruence classes modulo 15.)

A congruence class [a]15 belongs to G15 if and only if
gcd(a, 15) = 1. Hence the group G15 consists of the following
8 elements: [1], [2], [4], [7], [8], [11], [13], [14] or,
equivalently, [1], [2], [4], [7], [−7], [−4], [−2], [−1].

First we find all cyclic subgroups of G15. These are
{[1]}, {[1], [4]}, {[1], [−4]}, {[1], [−1]}, {[1], [2], [4], [8]},
and {[1], [4], [7], [13]} = {[1], [−2], [4], [−8]}.

Note that any subgroup of G15 is a union of (one or more)
cyclic subgroups. By Lagrange’s Theorem, a subgroup of G15

can be of order 1, 2, 4 or 8. It follows that the only possible
non-cyclic subgroups of G15 might be G15 itself and
{[1], [4], [−4], [−1]}. We can check that both are indeed
subgroups.

Remark. G15
∼= Z4 × Z2.



Problem 4. Let π = (1 2)(2 3)(3 4)(4 5)(5 6) and
σ = (1 2 3)(2 3 4)(3 4 5)(4 5 6). Find the order and the sign of
the following permutations: π, σ, πσ, and σπ.

Any transposition is an odd permutation, its sign is −1. Any
cycle of length 3 is an even permutation, its sign is +1. Since
the sign is a multiplicative function, we obtain that
sgn(π) = (−1)5 = −1 and sgn(σ) = 14 = 1. Then
sgn(πσ) = sgn(σπ) = sgn(π) sgn(σ) = −1.

To find the order of a permutation, we need to decompose it
into a product of disjoint cycles. First we decompose π and
σ: π = (1 2 3 4 5 6), σ = (1 2)(5 6). Then we use these
decompositions to decompose πσ and σπ: πσ = (1 3 4 5) and
σπ = (2 3 4 6). The order of a product of disjoint cycles
equals the least common multiple of their lengths. Therefore
o(π) = 6, o(σ) = 2, and o(πσ) = o(σπ) = 4.



Problem 5. Let G be a group. Suppose H is a subgroup of
G of finite index (G : H) and K is a subgroup of H of finite
index (H : K ). Prove that K is a subgroup of finite index in
G and, moreover, (G : K ) = (G : H)(H : K ).

First assume G is a finite group. Then any subgroup is of
finite order and of finite index. By Lagrange’s Theorem,
|G | = (G : H) |H| and |H| = (H : K ) |K | so that
|G | = (G : H)(H : K ) |K |. Also by Lagrange’s Theorem,
|G | = (G : K ) |K |. It follows that (G : K ) = (G : H)(H : K ).

In the general case, we need a different argument.



Problem 5. Let G be a group. Suppose H is a subgroup of
G of finite index (G : H) and K is a subgroup of H of finite
index (H : K ). Prove that K is a subgroup of finite index in
G and, moreover, (G : K ) = (G : H)(H : K ).

Let n = (G : H) and suppose g1, g2, . . . , gn is a complete list
of representatives of the left cosets of H in G . Further, let
k = (H : K ) and suppose h1, h2, . . . , hk is a complete list of
representatives of the left cosets of K in H. Then G is a
disjoint union of cosets g1H, g2H, . . . , gnH while H is a
disjoint union of cosets h1K , h2K , . . . , hkK . It follows that
each giH is a disjoint union of sets gih1K , gih2K , . . . , gihkK ,
which are cosets of K in G . Therefore G is a disjoint union of
all sets of the form gihjK , 1 ≤ i ≤ n, 1 ≤ j ≤ k. Hence
these are all cosets of the subgroup K in G . Thus the number
(G : K ) of the cosets equals nk = (G : H)(H : K ).



Problem 6. Let G be the group of all symmetries of a regular
tetrahedron T . The group G naturally acts on the set of
vertices of T , the set of edges of T , and the set of faces of T .

(i) Show that each of the three actions is transitive.
(ii) Show that the stabilizer of any vertex is isomorphic to

the symmetric group S3.
(iii) Show that the stabilizer of any edge is isomorphic to

the Klein 4-group Z2 × Z2.
(iv) Show that the stabilizer of any face is isomorphic to S3.



(i) Show that each of the three actions is transitive.

We can label vertices of T by 1, 2, 3 and 4. Then the action
of G on the vertices induces a homomorphism h : G → S4

(permutation representation). This homomorphism is
injective since any isometry of R3 is uniquely determined by
images of any 4 points not in the same plane. Observe that
every transposition is in the image h(G ) (it is realized by a
reflection about a plane of symmetry of T ). Since the
symmetric group S4 is generated by transpositions, it follows
that h(G ) = S4. Hence h is an isomorphism.

In view of the isomorphism h, the action of G on vertices of T
is essentially the natural action of S4 on {1, 2, 3, 4}. Since
any two vertices of T are endpoints of a unique edge and any
three vertices are vertices of a unique face, the actions of G on
edges and vertices of T are essentially the actions of S4 on
two-element and three-element subsets of {1, 2, 3, 4}.
Transitivity of all three actions follows.


