Homework assignment \#10

Problem 1 (2 pts). Let R_{1} and R_{2} be rings with unity.
(i) Suppose I_{1} is a (two-sided) ideal in R_{1} and I_{2} is an ideal in R_{2}. Show that $I_{1} \times I_{2}$ is an ideal in the ring $R_{1} \times R_{2}$.
(ii) Suppose I is an ideal in $R_{1} \times R_{2}$. Show that $I=I_{1} \times I_{2}$, where I_{1} is an ideal in R_{1} and I_{2} is an ideal in R_{2}.

Problem $2(3 \mathrm{pts})$. It is known that all ideals of the ring \mathbb{Z}_{n} are of the form $d \mathbb{Z}_{n}=\mathbb{Z}_{n} \cap d \mathbb{Z}$, where d is a divisor of n. For each divisor d of the number 24, answer the following questions.
(i) Does the ring $d \mathbb{Z}_{24}$ have divisors of zero?
(ii) Is $d \mathbb{Z}_{24}$ a field?
(iii) Does the factor ring $\mathbb{Z}_{24} / d \mathbb{Z}_{24}$ have divisors of zero?
(iv) Is $\mathbb{Z}_{24} / d \mathbb{Z}_{24}$ a field?

Problem 3. Let R be a commutative ring and I be an ideal in R. The radical of I in R, denoted \sqrt{I}, is the set of all elements $a \in R$ such that $a^{n} \in I$ for some integer $n \geq 1$ (where n may depend on a). Prove that \sqrt{I} is also an ideal in R.

Problem 4. For each divisor d of the number 24, find the radical of the ideal $d \mathbb{Z}_{24}$ in the ring \mathbb{Z}_{24}.

Problem 5. The radical of the trivial ideal $\{0\}$ is called the nilradical. Find the nilradical of the ring \mathbb{Z}_{600}.

Problem 6 (2 pts). Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the ring of 2×2 matrices with real entries. Find a left ideal $I_{L} \subset \mathcal{M}_{2,2}(\mathbb{R})$ and a right ideal $I_{R} \subset \mathcal{M}_{2,2}(\mathbb{R})$ that are not two-sided ideals.

