MATH 415 Modern Algebra I

Lecture 7: Cycle decomposition. Order and sign of a permutation.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself.

Two-row notation.
$$\pi = \begin{pmatrix} a & b & c & \dots \\ \pi(a) & \pi(b) & \pi(c) & \dots \end{pmatrix}$$
,

where a, b, c, \ldots is a list of all elements in the domain of π .

The set of all permutations of a finite set X is called the symmetric group on X. Notation: S_X , Σ_X , Sym(X).

The set of all permutations of $\{1, 2, ..., n\}$ is called the symmetric group on *n* symbols and denoted S_n or S(n).

Given two permutations π and σ , the composition $\pi\sigma$, defined by $\pi\sigma(x) = \pi(\sigma(x))$, is called the **product** of these permutations. In general, $\pi\sigma \neq \sigma\pi$, i.e., multiplication of permutations is not commutative. However, it is associative: $\pi(\sigma\tau) = (\pi\sigma)\tau$.

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

 $\pi(x_1) = x_2, \ \pi(x_2) = x_3, \dots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$ and $\pi(x) = x$ for any other $x \in X$. Notation. $\pi = (x_1 \ x_2 \ \dots \ x_r).$

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_r)$, then $\pi^{-1} = (x_r \ x_{r-1} \ \dots \ x_2 \ x_1)$.

Cycle decomposition

Let π be a permutation of X. We say that π **moves** an element $x \in X$ if $\pi(x) \neq x$. Otherwise π **fixes** x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

Theorem If π and σ are disjoint permutations in S_X , then they commute: $\pi \sigma = \sigma \pi$.

Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi\sigma(x) = \sigma\pi(x) = \pi(x)$.

Theorem Any permutation of a finite set can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Idea of the proof: Given $\pi \in S_X$, for any $x \in X$ consider a sequence $a_1 = x, a_2, a_3, \ldots$, where $a_{m+1} = \pi(a_m)$. Let r be the least index such that $a_r = a_k$ for some k < r. Then k = 1.

Cycle decomposition

Remark. Any cycle of length *m* can be denoted in *m* different ways depending on a choice of the initial point. For example, $(1\ 2\ 3\ 4) = (2\ 3\ 4\ 1) = (3\ 4\ 1\ 2) = (4\ 1\ 2\ 3).$

Examples

- $\bullet \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$ = (1 2 4 9 3 7 5)(6 12 8 11)(10) = (1 2 4 9 3 7 5)(6 12 8 11).
 - $(1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6) = (1\ 2\ 3\ 4\ 5\ 6).$
 - $(1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5) = (1 \ 5 \ 4 \ 3 \ 2).$
 - (2 4 3)(1 2)(2 3 4) = (1 4).

Order of a permutation

The **order** of a permutation $\pi \in S_n$, denoted $|\pi|$ or $o(\pi)$, is defined as the smallest positive integer m such that $\pi^m = \mathrm{id}$, the identity map. In other words, this is the order of π as an element of the symmetric group S_n .

(Recall that every element of a finite group has finite order.)

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \text{id}$ if and only if the order m divides r.

Remark. Notation $r \equiv s \mod m$ (*r* is congruent to *s* modulo *m*) means that *r* and *s* leave the same remainder after division by *m*.

Theorem Let π be a cyclic permutation. Then the order $|\pi|$ equals the length of the cycle π .

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5).$$

 $\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id.}$
 $\implies |\pi| = 5.$

•
$$\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$$

 $\sigma^2 = (1 \ 3 \ 5)(2 \ 4 \ 6), \ \sigma^3 = (1 \ 4)(2 \ 5)(3 \ 6),$
 $\sigma^4 = (1 \ 5 \ 3)(2 \ 6 \ 4), \ \sigma^5 = (1 \ 6 \ 5 \ 4 \ 3 \ 2), \ \sigma^6 = \text{id.}$
 $\implies |\sigma| = 6.$

•
$$\tau = (1 \ 2 \ 3)(4 \ 5).$$

 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$
 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = \mathrm{id}.$
 $\implies |\tau| = 6.$

Lemma 1 Let π and σ be two commuting permutations: $\pi\sigma = \sigma\pi$. Then (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$, (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_n . Then (i) the powers π^r and σ^s are also disjoint, (ii) $\pi^r \sigma^s = \text{id}$ implies $\pi^r = \sigma^s = \text{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_n . Then (i) they commute: $\pi \sigma = \sigma \pi$, (ii) $(\pi \sigma)^r = \text{id}$ if and only if $\pi^r = \sigma^r = \text{id}$, (iii) $|\pi \sigma| = \text{lcm}(|\pi|, |\sigma|)$.

Theorem Let $\pi \in S_n$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_1, \dots, \sigma_k$.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

The cycle decomposition is $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)$ or $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)(10)$. It follows that $|\pi| = \text{lcm}(7, 4) = \text{lcm}(7, 4, 1) = 28$.

•
$$\sigma = (1 \ 2)(3 \ 4)(5 \ 6).$$

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals lcm(2,2,2) = 2.

•
$$\tau = (1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5).$$

The permutation is given as a product of transpositions. However the transpositions are not disjoint and so this representation does not help to find the order of τ . The cycle decomposition is $\tau = (5 \ 4 \ 3 \ 2 \ 1)$. Hence τ is a cycle of length 5 so that $|\tau| = 5$.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \ge 2$ elements is a product of transpositions. **(ii)** If $\pi = \tau_1 \tau_2 \dots \tau_k = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The sign $sgn(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_n$. **(ii)** $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S_n$. **(iii)** $\operatorname{sgn}(\operatorname{id}) = 1$. **(iv)** $\operatorname{sgn}(\tau) = -1$ for any transposition τ . **(v)** $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

First we decompose π into a product of disjoint cycles:

 $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11).$

The cycle $\sigma_1 = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)$ has length 7, hence it is an even permutation. The cycle $\sigma_2 = (6 \ 12 \ 8 \ 11)$ has length 4, hence it is an odd permutation. Then

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\sigma_1 \sigma_2) = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) = 1 \cdot (-1) = -1.$$

•
$$\pi = (2 \ 4 \ 3)(1 \ 2)(2 \ 3 \ 4).$$

 π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1. Even though the cycles are not disjoint, $sgn(\pi) = 1 \cdot (-1) \cdot 1 = -1$.