MATH 415

Modern Algebra I

Lecture 7:

Cycle decomposition.
Order and sign of a permutation.

Permutations

Let X be a finite set. A permutation of X is a bijection from X to itself.
Two-row notation. $\pi=\left(\begin{array}{cccc}a & b & c & \cdots \\ \pi(a) & \pi(b) & \pi(c) & \cdots\end{array}\right)$,
where a, b, c, \ldots is a list of all elements in the domain of π.
The set of all permutations of a finite set X is called the symmetric group on X. Notation: $S_{X}, \Sigma_{X}, \operatorname{Sym}(X)$.
The set of all permutations of $\{1,2, \ldots, n\}$ is called the symmetric group on n symbols and denoted S_{n} or $S(n)$.

Given two permutations π and σ, the composition $\pi \sigma$, defined by $\pi \sigma(x)=\pi(\sigma(x))$, is called the product of these permutations. In general, $\pi \sigma \neq \sigma \pi$, i.e., multiplication of permutations is not commutative. However, it is associative: $\pi(\sigma \tau)=(\pi \sigma) \tau$.

Cycles

A permutation π of a set X is called a cycle (or cyclic) of length r if there exist r distinct elements $x_{1}, x_{2}, \ldots, x_{r} \in X$ such that

$$
\pi\left(x_{1}\right)=x_{2}, \pi\left(x_{2}\right)=x_{3}, \ldots, \pi\left(x_{r-1}\right)=x_{r}, \pi\left(x_{r}\right)=x_{1}
$$

and $\pi(x)=x$ for any other $x \in X$.
Notation. $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$.
The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a transposition.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$, then $\pi^{-1}=\left(\begin{array}{lllll}x_{r} & x_{r-1} & \ldots & x_{2} & x_{1}\end{array}\right)$.

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.
Two permutations π and σ are called disjoint if the set of elements moved by π is disjoint from the set of elements moved by σ.

Theorem If π and σ are disjoint permutations in S_{X}, then they commute: $\pi \sigma=\sigma \pi$.
Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi \sigma(x)=\sigma \pi(x)=\pi(x)$.

Theorem Any permutation of a finite set can be expressed as a product of disjoint cycles. This cycle decomposition is unique up to rearrangement of the cycles involved. Idea of the proof: Given $\pi \in S_{X}$, for any $x \in X$ consider a sequence $a_{1}=x, a_{2}, a_{3}, \ldots$, where $a_{m+1}=\pi\left(a_{m}\right)$. Let r be the least index such that $a_{r}=a_{k}$ for some $k<r$. Then $k=1$.

Cycle decomposition

wrong picture

right picture

Remark. Any cycle of length m can be denoted in m different ways depending on a choice of the initial point. For example, $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)=\left(\begin{array}{lll}3 & 4 & 1\end{array}\right)=\left(\begin{array}{lll}4 & 1 & 2\end{array}\right)$.

Examples

$$
\begin{aligned}
& \text { - }\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8
\end{array}\right) \\
& =(1249375)(612811)(10) \\
& =(1249375)(612811) \text {. } \\
& \text { - (12)(23)(34)(45)(56)=(12345). } \\
& \text { - }(12)(13)(14)(15)=\left(\begin{array}{lll}
1 & 5 & 4
\end{array}\right. \text { 2). } \\
& \text { - }\left(\begin{array}{ll}
2 & 4
\end{array}\right)(12)(234)=(14) \text {. }
\end{aligned}
$$

Order of a permutation

The order of a permutation $\pi \in S_{n}$, denoted $|\pi|$ or $o(\pi)$, is defined as the smallest positive integer m such that $\pi^{m}=\mathrm{id}$, the identity map. In other words, this is the order of π as an element of the symmetric group S_{n}.
(Recall that every element of a finite group has finite order.)
Theorem Let π be a permutation of order m. Then $\pi^{r}=\pi^{s}$ if and only if $r \equiv s$ mod m. In particular, $\pi^{r}=\mathrm{id}$ if and only if the order m divides r.

Remark. Notation $r \equiv s$ mod m (r is congruent to s modulo m) means that r and s leave the same remainder after division by m.

Theorem Let π be a cyclic permutation. Then the order $|\pi|$ equals the length of the cycle π.

Examples. • $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right.$ 5).

$$
\begin{aligned}
& \pi^{2}=\left(\begin{array}{lllll}
1 & 3 & 5 & 2 & 4
\end{array}\right), \pi^{3}=\left(\begin{array}{lllll}
1 & 4 & 2 & 5 & 3
\end{array}\right), \\
& \pi^{4}=\left(\begin{array}{lllll}
1 & 5 & 4 & 3 & 2
\end{array}\right), \pi^{5}=\mathrm{id} \\
& \Longrightarrow|\pi|=5
\end{aligned}
$$

- $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array} 46\right.$).
$\sigma^{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)(246), \sigma^{3}=(14)(25)(36)$,

$$
\left.\sigma^{4}=(153)(264), \sigma^{5}=\left(\begin{array}{ll}
1 & 6
\end{array}\right) 432\right), \sigma^{6}=\mathrm{id}
$$

$$
\Longrightarrow|\sigma|=6
$$

- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)$.
$\tau^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right), \tau^{3}=\left(\begin{array}{ll}4 & 5\end{array}\right), \tau^{4}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$,
$\tau^{5}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)(45), \tau^{6}=\mathrm{id}$.
$\Longrightarrow|\tau|=6$.

Lemma 1 Let π and σ be two commuting permutations: $\pi \sigma=\sigma \pi$. Then
(i) the powers π^{r} and σ^{s} commute for all $r, s \in \mathbb{Z}$,
(ii) $(\pi \sigma)^{r}=\pi^{r} \sigma^{r}$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_{n}. Then (i) the powers π^{r} and σ^{s} are also disjoint,
(ii) $\pi^{r} \sigma^{s}=\mathrm{id}$ implies $\pi^{r}=\sigma^{s}=\mathrm{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_{n}. Then
(i) they commute: $\pi \sigma=\sigma \pi$,
(ii) $(\pi \sigma)^{r}=$ id if and only if $\pi^{r}=\sigma^{r}=\mathrm{id}$,
(iii) $|\pi \sigma|=\operatorname{lcm}(|\pi|,|\sigma|)$.

Theorem Let $\pi \in S_{n}$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_{1}, \ldots, \sigma_{k}$.

Examples

$$
\text { - } \pi=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8
\end{array}\right) .
$$

The cycle decomposition is $\pi=(1249375)(612811)$ or $\pi=(1249375)(612811)(10)$. It follows that $|\pi|=\operatorname{lcm}(7,4)=\operatorname{lcm}(7,4,1)=28$.

- $\sigma=(12)(34)(56)$.

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals $\operatorname{lcm}(2,2,2)=2$.

- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{l}1\end{array}\right)(15)$.

The permutation is given as a product of transpositions. However the transpositions are not disjoint and so this representation does not help to find the order of τ. The cycle decomposition is $\tau=\left(\begin{array}{ll}5 & 4 \\ 3 & 21\end{array}\right)$. Hence τ is a cycle of length 5 so that $|\tau|=5$.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \geq 2$ elements is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_{n}$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S_{n}$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Examples

- $\pi=\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8\end{array}\right)$.

First we decompose π into a product of disjoint cycles:

$$
\pi=(124937 \text { 5)(6 } 128 \text { 11). }
$$

The cycle $\sigma_{1}=(1249375)$ has length 7 , hence it is an even permutation. The cycle $\sigma_{2}=\left(\begin{array}{ll}612811)\end{array}\right.$ has length 4, hence it is an odd permutation. Then

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\sigma_{1} \sigma_{2}\right)=\operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right)=1 \cdot(-1)=-1
$$

- $\pi=\left(\begin{array}{ll}2 & 4\end{array}\right)(12)(234)$.
π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1 . Even though the cycles are not disjoint, $\operatorname{sgn}(\pi)=1 \cdot(-1) \cdot 1=-1$.

