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Modern Algebra I

Lecture 8:

Sign of a permutation (continued).
Classical definition of the determinant.

Cosets. Langrange’s theorem.



Sign of a permutation

Theorem 1 (i) Any permutation of n ≥ 2 elements is a
product of transpositions. (ii) If π = τ1τ2 . . . τk = τ ′1τ

′
2 . . . τ

′
m,

where τi , τ
′
j are transpositions, then the numbers k and m are

of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions.

The sign sgn(π) of the permutation π is defined to be +1 if
π is even, and −1 if π is odd.

Theorem 2 (i) sgn(πσ) = sgn(π) sgn(σ) for any π, σ ∈ Sn.
(ii) sgn(π−1) = sgn(π) for any π ∈ Sn.
(iii) sgn(id) = 1.
(iv) sgn(τ) = −1 for any transposition τ .
(v) sgn(σ) = (−1)r−1 for any cycle σ of length r .



Let π ∈ Sn and i , j be integers, 1 ≤ i < j ≤ n. We say that
the permutation π preserves order of the pair (i , j) if
π(i) < π(j). Otherwise π makes an inversion. Denote by
N(π) the number of inversions made by the permutation π.

Lemma 1 Let τ, π ∈ Sn and suppose that τ is an adjacent
transposition, τ = (k k+1). Then |N(τπ)− N(π)| = 1.

Proof: For every pair (i , j), 1 ≤ i < j ≤ n, let us compare
the order of pairs π(i), π(j) and τπ(i), τπ(j). We observe
that the order differs exactly for one pair, when
{π(i), π(j)} = {k, k+1}. The lemma follows.

Lemma 2 Let π ∈ Sn and τ1, τ2, . . . , τk be adjacent
transpositions. Then (i) for any π ∈ Sn the numbers k and
N(τ1τ2 . . . τkπ)− N(π) are of the same parity,
(ii) the numbers k and N(τ1τ2 . . . τk) are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction
on k. (ii) is a particular case of part (i), when π = id.



Lemma 3 (i) Any cycle of length r is a product of r−1
transpositions. (ii) Any transposition is a product of an odd
number of adjacent transpositions.

Proof: (i) (x1 x2 . . . xr) = (x1 x2)(x2 x3)(x3 x4) . . . (xr−1 xr).

(ii) (k k+r) = σ−1(k k+1)σ, where σ = (k+1 k+2 . . . k+r).

By the above, σ = (k+1 k+2)(k+2 k+3) . . . (k+r−1 k+r)
and σ−1 = (k+r k+r−1) . . . (k+3 k+2)(k+2 k+1).

Theorem (i) Any permutation is a product of transpositions.
(ii) If π = τ1τ2 . . . τk , where τi are transpositions, then the
numbers k and N(π) are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles.
By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of τ1, τ2, . . . , τk is a product of an
odd number of adjacent transpositions. Hence π= τ ′1τ

′
2 . . . τ

′
m,

where τ ′i are adjacent transpositions and number m is of the
same parity as k. By Lemma 2, m has the same parity as N(π).



Alternating groups

Given an integer n ≥ 2, the alternating group on n symbols,
denoted An or A(n), is the set of all even permutations in the
symmetric group Sn.

Theorem The alternating group An is a subgroup

of the symmetric group Sn.

In other words, the product of even permutations is even, the
identity function is an even permutation, and the inverse of an
even permutation is even.

Theorem The alternating group An has n!/2

elements.

Proof: Consider the function F : An → Sn \ An given by
F (π) = (1 2)π. One can observe that F is bijective. Hence
the sets An and Sn \ An have the same number of elements.



Examples. • The alternating group A3 has 3
elements: the identity function and two cycles of
length 3, (1 2 3) and (1 3 2).

• The alternating group A4 has 12 elements of the

following cycle shapes: id, (1 2 3), and
(1 2)(3 4).

• The alternating group A5 has 60 elements of the

following cycle shapes: id, (1 2 3), (1 2)(3 4), and
(1 2 3 4 5).



Classical definition of the determinant

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32.

If A = (aij) is an n×n matrix then

detA =
∑

π∈Sn

sgn(π) a1,π(1) a2,π(2) . . . an,π(n),

where π runs over all permutations of {1, 2, . . . , n}.



Theorem detAT = detA.

Proof: Let A = (aij)1≤i ,j≤n. Then AT = (bij)1≤i ,j≤n, where
bij = aji . We have

detAT =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aπ(1),1 aπ(2),2 . . . aπ(n),n

=
∑

π∈Sn

sgn(π) a1,π−1(1) a2,π−1(2) . . . an,π−1(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
σ = π−1. It follows that

detAT =
∑

σ∈Sn

sgn(σ−1) a1,σ(1) a2,σ(2) . . . an,σ(n)

=
∑

σ∈Sn

sgn(σ) a1,σ(1) a2,σ(2) . . . an,σ(n) = detA.



Theorem 1 Suppose A is a square matrix and B is
obtained from A by exchanging two rows. Then

detB = − detA.

Theorem 2 Suppose A is a square matrix and B is

obtained from A by permuting its rows. Then
detB = detA if the permutation is even and

detB = − detA if the permutation is odd.



Proof: Let A = (aij)1≤i ,j≤n be an n×n matrix. Suppose that
a matrix B is obtained from A by permuting its rows according
to a permutation σ ∈ Sn. Then B = (bij)1≤i ,j≤n, where
bσ(i),j = aij . Equivalently, bij = aσ−1(i),j . We have

detB =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aσ−1(1),π(1) aσ−1(2),π(2) . . . aσ−1(n),π(n)

=
∑

π∈Sn

sgn(π) a1,πσ(1) a2,πσ(2) . . . an,πσ(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
τ = πσ. It follows that

detB =
∑

τ∈Sn

sgn(τσ−1) a1,τ(1) a2,τ(2) . . . an,τ(n)

= sgn(σ−1)
∑

τ∈Sn

sgn(τ) a1,τ(1) a2,τ(2) . . . an,τ(n) = sgn(σ) detA.



The Vandermonde determinant

Definition. The Vandermonde determinant is

the determinant of the following matrix
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,

where x1, x2, . . . , xn ∈ R. Equivalently,
V = (aij)1≤i ,j≤n, where aij = x

j−1
i .
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=
∏

1≤i<j≤n

(xj − xi).

Corollary Consider a polynomial

p(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xj − xi).

Then

p(xπ(1), xπ(2), . . . , xπ(n)) = sgn(π) p(x1, x2, . . . , xn)

for any permutation π ∈ Sn.



Cosets

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah | h ∈ H}, where a ∈ G . Similarly, a right coset of H
in G is a set of the form Ha = {ha | h ∈ H}, where a ∈ G .

Theorem Let H be a subgroup of G and define a relation R on G

by aRb ⇐⇒ a ∈ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b−1a ∈ H.
Reflexivity: aRa since a−1a = e ∈ H.
Symmetry: aRb =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H

=⇒ bRa. Transitivity: aRb and bRc =⇒ b−1a, c−1b ∈ H

=⇒ c−1a = (c−1b)(b−1a) ∈ H =⇒ aRc .

Corollary The cosets of the subgroup H in G form a partition of
the set G .

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G . Clearly, the equivalence class of g is gH.



Examples of cosets

• G = Z, H = nZ.
The coset of a ∈ Z is a + nZ, the congruence class of a

modulo n (all integers b such that b ≡ a mod n).

• G = R
3, H is the plane x + 2y − z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, y0, z0) ∈ R

3 is the plane x + 2y − z = x0 + 2y0 − z0
parallel to H.

• G = Sn, H = An.
There are only 2 cosets, the set of even permutations An and
the set of odd permutations Sn \ An.

• G is any group, H = G .
There is only one coset, G .

• G is any group, H = {e}.
Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted |G |. Given a subgroup H of G , the number of
cosets of H in G is called the index of H in G and denoted
(G : H).

Theorem (Lagrange) If H is a subgroup of a finite group
G , then |G | = (G : H) · |H|. In particular, the order of H
divides the order of G .

Proof: For any a ∈ G define a function f : H → aH by
f (h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f (h1) = f (h2) =⇒ ah1 = ah2 =⇒ h1 = h2.
Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G ,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order
o(g) of any element g ∈ G divides the order of G .

Proof: The order of g ∈ G is the same as the order of the
cyclic group 〈g〉, which is a subgroup of G .

Corollary 2 If G is a finite group, then g |G | = e

for all g ∈ G .

Proof: We have g n = e whenever n is a multiple of o(g).
By Corollary 1, |G | is a multiple of o(g) for all g ∈ G .



Corollary 3 Any group G of prime order p is cyclic.

Proof: Take any element g ∈ G different from e. Then
o(g) 6= 1, hence o(g) = p, and this is also the order of the
cyclic subgroup 〈g〉. It follows that 〈g〉 = G .

Corollary 4 Any group G of prime order has only
two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then |H| divides |G |.
Since |G | is prime, we have |H| = 1 or |H| = |G |.
In the former case, H is trivial. In the latter case, H = G .

Corollary 5 The alternating group An, n ≥ 2,
consists of n!/2 elements.

Proof: Indeed, An is a subgroup of index 2 in the symmetric
group Sn. The latter consists of n! elements.



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique

subgroup of G of order d , which is also cyclic.

Proof: Let g be the generator of the cyclic group G . Take
any divisor d of n. Since the order of g is n, it follows that
the element g n/d has order d . Therefore a cyclic group
H = 〈g n/d〉 has order d .

Now assume H ′ is another subgroup of G of order d . The
group H ′ is cyclic since G is cyclic. Hence H ′ = 〈g k〉 for
some k ∈ Z. Since the order of the element g k is d while the
order of g is n, it follows that gcd(n, k) = n/d . We know
that gcd(n, k) = an + bk for some a, b ∈ Z. Then
g n/d = g an+bk = g nag kb = (g n)a(g k)b = (g k)b ∈ 〈g k〉 = H ′.
Consequently, H = 〈g n/d〉 ⊂ H ′. However H and H ′ both
consist of d elements. Thus H ′ = H.


