MATH 415
Modern Algebra I
Lecture 8:
Sign of a permutation (continued).
Classical definition of the determinant.
Cosets. Langrange's theorem.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \geq 2$ elements is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_{n}$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S_{n}$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Let $\pi \in S_{n}$ and i, j be integers, $1 \leq i<j \leq n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i)<\pi(j)$. Otherwise π makes an inversion. Denote by $N(\pi)$ the number of inversions made by the permutation π.

Lemma 1 Let $\tau, \pi \in S_{n}$ and suppose that τ is an adjacent transposition, $\tau=(k k+1)$. Then $|N(\tau \pi)-N(\pi)|=1$.
Proof: For every pair $(i, j), 1 \leq i<j \leq n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau \pi(i), \tau \pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\}=\{k, k+1\}$. The lemma follows.
Lemma 2 Let $\pi \in S_{n}$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ be adjacent transpositions. Then (i) for any $\pi \in S_{n}$ the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k} \pi\right)-N(\pi)$ are of the same parity,
(ii) the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length r is a product of $r-1$ transpositions. (ii) Any transposition is a product of an odd number of adjacent transpositions.

$$
\text { Proof: (i) }\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{r}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ll}
x_{3} & x_{4}
\end{array}\right) \ldots\left(x_{r-1} x_{r}\right) .
$$

(ii) $(k k+r)=\sigma^{-1}(k k+1) \sigma$, where $\sigma=(k+1 k+2 \ldots k+r)$.

By the above, $\sigma=(k+1 k+2)(k+2 k+3) \ldots(k+r-1 k+r)$ and $\sigma^{-1}=(k+r k+r-1) \ldots(k+3 k+2)(k+2 k+1)$.

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}$, where τ_{i} are transpositions, then the numbers k and $N(\pi)$ are of the same parity.
Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.
(ii) By Lemma 3, each of $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ is a product of an odd number of adjacent transpositions. Hence $\pi=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where τ_{i}^{\prime} are adjacent transpositions and number m is of the same parity as k. By Lemma $2, m$ has the same parity as $N(\pi)$.

Alternating groups

Given an integer $n \geq 2$, the alternating group on n symbols, denoted A_{n} or $A(n)$, is the set of all even permutations in the symmetric group S_{n}.

Theorem The alternating group A_{n} is a subgroup of the symmetric group S_{n}.

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group A_{n} has $n!/ 2$ elements.

Proof: Consider the function $F: A_{n} \rightarrow S_{n} \backslash A_{n}$ given by $F(\pi)=(12) \pi$. One can observe that F is bijective. Hence the sets A_{n} and $S_{n} \backslash A_{n}$ have the same number of elements.

Examples. - The alternating group A_{3} has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 32).

- The alternating group A_{4} has 12 elements of the following cycle shapes: id, (1 23), and (1 2)(3 4).
- The alternating group A_{5} has 60 elements of the following cycle shapes: id, (1 2 3), (1 2)(34), and (12345).

Classical definition of the determinant

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{aligned}
& \\
& a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .
\end{aligned}
$$

If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix then

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}
$$

where π runs over all permutations of $\{1,2, \ldots, n\}$.

Theorem $\operatorname{det} A^{T}=\operatorname{det} A$.
Proof: Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Then $A^{T}=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where $b_{i j}=a_{j i}$. We have

$$
\begin{aligned}
\operatorname{det} A^{T} & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1, \pi(1)} b_{2, \pi(2)} \ldots b_{n, \pi(n)} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{\pi(1), 1} a_{\pi(2), 2} \ldots a_{\pi(n), n} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi^{-1}(1)} a_{2, \pi^{-1}(2)} \ldots a_{n, \pi^{-1}(n)} .
\end{aligned}
$$

When π runs over all permutations of $\{1,2, \ldots, n\}$, so does $\sigma=\pi^{-1}$. It follows that

$$
\begin{aligned}
\operatorname{det} A^{T} & =\sum_{\sigma \in S_{n}} \operatorname{sgn}\left(\sigma^{-1}\right) a_{1, \sigma(1)} a_{2, \sigma(2)} \ldots a_{n, \sigma(n)} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \ldots a_{n, \sigma(n)}=\operatorname{det} A .
\end{aligned}
$$

Theorem 1 Suppose A is a square matrix and B is obtained from A by exchanging two rows. Then $\operatorname{det} B=-\operatorname{det} A$.

Theorem 2 Suppose A is a square matrix and B is obtained from A by permuting its rows. Then $\operatorname{det} B=\operatorname{det} A$ if the permutation is even and $\operatorname{det} B=-\operatorname{det} A$ if the permutation is odd.

Proof: Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be an $n \times n$ matrix. Suppose that a matrix B is obtained from A by permuting its rows according to a permutation $\sigma \in S_{n}$. Then $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where $b_{\sigma(i), j}=a_{i j}$. Equivalently, $b_{i j}=a_{\sigma^{-1}(i), j}$. We have

$$
\begin{aligned}
\operatorname{det} B & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1, \pi(1)} b_{2, \pi(2)} \ldots b_{n, \pi(n)} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{\sigma^{-1}(1), \pi(1)} a_{\sigma^{-1}(2), \pi(2)} \ldots a_{\sigma^{-1}(n), \pi(n)} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi \sigma(1)} a_{2, \pi \sigma(2)} \ldots a_{n, \pi \sigma(n)} .
\end{aligned}
$$

When π runs over all permutations of $\{1,2, \ldots, n\}$, so does $\tau=\pi \sigma$. It follows that
$\operatorname{det} B=\sum_{\tau \in S_{n}} \operatorname{sgn}\left(\tau \sigma^{-1}\right) a_{1, \tau(1)} a_{2, \tau(2)} \ldots a_{n, \tau(n)}$
$=\operatorname{sgn}\left(\sigma^{-1}\right) \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) a_{1, \tau(1)} a_{2, \tau(2)} \ldots a_{n, \tau(n)}=\operatorname{sgn}(\sigma) \operatorname{det} A$.

The Vandermonde determinant

Definition. The Vandermonde determinant is the determinant of the following matrix

$$
V=\left(\begin{array}{lllll}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$. Equivalently, $V=\left(a_{i j}\right)_{1 \leq i, j \leq n}$, where $a_{i j}=x_{i}^{j-1}$.

Theorem

$$
\left|\begin{array}{lllll}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Corollary Consider a polynomial

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Then

$$
p\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)=\operatorname{sgn}(\pi) p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for any permutation $\pi \in S_{n}$.

Cosets

Definition. Let H be a subgroup of a group G. A coset (or left coset) of the subgroup H in G is a set of the form $a H=\{a h \mid h \in H\}$, where $a \in G$. Similarly, a right coset of H in G is a set of the form $H a=\{h a \mid h \in H\}$, where $a \in G$.

Theorem Let H be a subgroup of G and define a relation R on G by $a R b \Longleftrightarrow a \in b H$. Then R is an equivalence relation.
Proof: We have $a R b$ if and only if $b^{-1} a \in H$.
Reflexivity: aRa since $a^{-1} a=e \in H$.
Symmetry: $a R b \Longrightarrow b^{-1} a \in H \Longrightarrow a^{-1} b=\left(b^{-1} a\right)^{-1} \in H$
$\Longrightarrow b R a$. Transitivity: $a R b$ and $b R c \Longrightarrow b^{-1} a, c^{-1} b \in H$ $\Longrightarrow c^{-1} a=\left(c^{-1} b\right)\left(b^{-1} a\right) \in H \Longrightarrow a R c$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is $g H$.

Examples of cosets

- $G=\mathbb{Z}, H=n \mathbb{Z}$.

The coset of $a \in \mathbb{Z}$ is $a+n \mathbb{Z}$, the congruence class of a modulo n (all integers b such that $b \equiv a \bmod n$).

- $G=\mathbb{R}^{3}, H$ is the plane $x+2 y-z=0$. H is a subgroup of G since it is a subspace. The coset of $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ is the plane $x+2 y-z=x_{0}+2 y_{0}-z_{0}$ parallel to H.
- $G=S_{n}, H=A_{n}$.

There are only 2 cosets, the set of even permutations A_{n} and the set of odd permutations $S_{n} \backslash A_{n}$.

- G is any group, $H=G$.

There is only one coset, G.

- G is any group, $H=\{e\}$.

Each element of G forms a separate coset.

Lagrange's Theorem

The number of elements in a group G is called the order of G and denoted $|G|$. Given a subgroup H of G, the number of cosets of H in G is called the index of H in G and denoted ($G: H$).

Theorem (Lagrange) If H is a subgroup of a finite group G, then $|G|=(G: H) \cdot|H|$. In particular, the order of H divides the order of G.

Proof: For any $a \in G$ define a function $f: H \rightarrow a H$ by $f(h)=a h$. By definition of $a H$, this function is surjective. Also, it is injective due to the left cancellation property: $f\left(h_{1}\right)=f\left(h_{2}\right) \Longrightarrow a h_{1}=a h_{2} \Longrightarrow h_{1}=h_{2}$.
Therefore f is bijective. It follows that the number of elements in the coset $a H$ is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows.

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order $o(g)$ of any element $g \in G$ divides the order of G.
Proof: The order of $g \in G$ is the same as the order of the cyclic group $\langle g\rangle$, which is a subgroup of G.

Corollary 2 If G is a finite group, then $g^{|G|}=e$ for all $g \in G$.
Proof: We have $g^{n}=e$ whenever n is a multiple of $o(g)$. By Corollary $1,|G|$ is a multiple of $o(g)$ for all $g \in G$.

Corollary 3 Any group G of prime order p is cyclic.
Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence $o(g)=p$, and this is also the order of the cyclic subgroup $\langle g\rangle$. It follows that $\langle g\rangle=G$.

Corollary 4 Any group G of prime order has only two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then $|H|$ divides $|G|$.
Since $|G|$ is prime, we have $|H|=1$ or $|H|=|G|$. In the former case, H is trivial. In the latter case, $H=G$.

Corollary 5 The alternating group $A_{n}, n \geq 2$, consists of $n!/ 2$ elements.

Proof: Indeed, A_{n} is a subgroup of index 2 in the symmetric group S_{n}. The latter consists of $n!$ elements.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take any divisor d of n. Since the order of g is n, it follows that the element $g^{n / d}$ has order d. Therefore a cyclic group $H=\left\langle g^{n / d}\right\rangle$ has order d.
Now assume H^{\prime} is another subgroup of G of order d. The group H^{\prime} is cyclic since G is cyclic. Hence $H^{\prime}=\left\langle g^{k}\right\rangle$ for some $k \in \mathbb{Z}$. Since the order of the element g^{k} is d while the order of g is n, it follows that $\operatorname{gcd}(n, k)=n / d$. We know that $\operatorname{gcd}(n, k)=a n+b k$ for some $a, b \in \mathbb{Z}$. Then $g^{n / d}=g^{a n+b k}=g^{n a} g^{k b}=\left(g^{n}\right)^{a}\left(g^{k}\right)^{b}=\left(g^{k}\right)^{b} \in\left\langle g^{k}\right\rangle=H^{\prime}$. Consequently, $H=\left\langle g^{n / d}\right\rangle \subset H^{\prime}$. However H and H^{\prime} both consist of d elements. Thus $H^{\prime}=H$.

