MATH 415

Modern Algebra I

Lecture 13:
 Transformation groups (continued). Group actions.

Groups of symmetries

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a motion (or a rigid motion) if it preserves distances between points.

Theorem All motions of \mathbb{R}^{n} form a transformation group. Any motion $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and A is an orthogonal matrix $\left(A^{T} A=A A^{T}=l\right)$.
Given a geometric figure $F \subset \mathbb{R}^{n}$, a symmetry of F is a motion of \mathbb{R}^{n} that preserves F. All symmetries of F form a transformation group.

Example. - The dihedral group D_{n} is the group of symmetries of a regular n-gon. It consists of $2 n$ elements: n reflections, $n-1$ rotations by angles $2 \pi k / n$, $k=1,2, \ldots, n-1$, and the identity function.

Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.

Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.

Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

Rotations of the circle

Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be the rotation of the circle S^{1} by angle $\alpha \in \mathbb{R}$. All rotations $R_{\alpha}, \alpha \in \mathbb{R}$ form a transformation group. Namely, $R_{\alpha} R_{\beta}=R_{\alpha+\beta}, R_{\alpha}^{-1}=R_{-\alpha}$, and $R_{0}=\mathrm{id}$.
The group of rotations is a subgroup of the group of all symmetries of the circle (the other symmetries are reflections).

Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called an automorphism of G.
Automorphisms are "symmetries" of the group as an algebraic structure. All automorphisms of a given group G form a transformation group denoted $\operatorname{Aut}(G)$.
Example. • Conjugation.
Take any $g \in G$ and define a map $i_{g}: G \rightarrow G$ by $i_{g}(x)=g \times g^{-1}$ for all $x \in G$. Then $i_{g}(x y)=g(x y) g^{-1}$ $=g x\left(g^{-1} g\right) y g^{-1}=\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$. Hence i_{g} is a homomorphism. Further, $i_{g}\left(i_{h}(x)\right)=i_{g}\left(h \times h^{-1}\right)$ $=g\left(h x h^{-1}\right) g^{-1}=(g h) \times(g h)^{-1}=i_{g h}(x)$. Hence $i_{g} \circ i_{h}=i_{g h}$ for all $g, h \in G$. In particular, $i_{g} \circ i_{g-1}=i_{g-1} \circ i_{g}=i_{e}=\operatorname{id}_{G}$. Therefore $i_{g^{-1}}=\left(i_{g}\right)^{-1}$ so that i_{g} is bijective.
Automorphisms of the form i_{g} are called inner. They form a group $\operatorname{Inn}(G)$, which is a normal subgroup of $\operatorname{Aut}(G)$.

Group action

Definition. An action ϕ of a group G on a set X (denoted $\phi: G \curvearrowright X)$ is a function $\phi: G \times X \rightarrow X$ such that - $\phi(g h, x)=\phi(g, \phi(h, x))$ for all $g, h \in G$ and $x \in X$;

- $\phi(e, x)=x$ for all $x \in X$.

Typically, the element $\phi(g, x)$ is denoted $g x$. Then the above conditions can be rewritten as $g(h x)=(g h) x$ and $e x=x$.
The action ϕ can (and should) be regarded as a collection of transformations $T_{g}: X \rightarrow X, g \in G$, given by $T_{g}(x)=\phi(g, x)$. It follows from the definition that $T_{g} T_{h}=T_{g h}, T_{g^{-1}}=T_{g}^{-1}$, and $T_{e}=\mathrm{id}_{X}$. Hence $\left\{T_{g}\right\}_{g \in G}$ is a transformation group and $g \mapsto T_{g}$ is a homomorphism of the group G to the symmetric group S_{X} (called a permutation representation).
The group actions can be used to represent a given group as a transformation group or to parametrize a transformation group by an abstract group.

Examples of group actions

- Trivial action

Any group G acts on any nonempty set X; the action $\phi: G \curvearrowright X$ is given by $\phi(g, x)=x$.

- Scalar multiplication

The multiplicative group $\mathbb{R} \backslash\{0\}$ acts on any vector space V; the action $\phi: \mathbb{R} \backslash\{0\} \curvearrowright V$ is given by $\phi(\lambda, \mathbf{v})=\lambda \mathbf{v}$.

- Natural action of a transformation group
G is a subgroup of S_{X} (all permutations of the set X); the action $\phi: G \curvearrowright X$ is given by $\phi(f, x)=f(x)$.
- Koopman representation
G is a subgroup of S_{X}; it acts on the vector space $\mathcal{F}(X, \mathbb{R})$ of functions $f: X \rightarrow \mathbb{R}$ by change of the variable. The action $\phi: G \curvearrowright \mathcal{F}(X, \mathbb{R})$ is given by $\phi(g, f)=f \circ g^{-1}$. Note that $\left(f \circ g_{1}^{-1}\right) \circ g_{2}^{-1}=f \circ\left(g_{2} g_{1}\right)^{-1}$.

Examples of group actions

- Left adjoint action

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=g x$.

- Right adjoint action

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=x g^{-1}$. Note that $\left(x g_{1}^{-1}\right) g_{2}^{-1}=x\left(g_{2} g_{1}\right)^{-1}$.

- Conjugation

Any group G acts on itself; the action $\phi: G \curvearrowright G$ is given by $\phi(g, x)=g \times g^{-1}$. This action is by automorphisms.

- Action on cosets of a subgroup

Any group G acts on the factor space G / H by a subgroup H (where H need not be normal); the action $\phi: G \curvearrowright G / H$ is given by $\phi(g, x H)=(g x) H$.

An action of the additive group \mathbb{R} is called a flow.
Example. Consider an autonomous system of n ordinary differential equations of the first order

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
\dot{x}_{2}=g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
\ldots \ldots \ldots \\
\ddot{x}_{n}=g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right),
\end{array}\right.
$$

where $g_{1}, g_{2}, \ldots, g_{n}$ are differentiable functions defined in a domain $D \subset \mathbb{R}^{n}$. In vector form, $\dot{\mathbf{v}}=G(\mathbf{v})$, where $G: D \rightarrow \mathbb{R}^{n}$ is a vector field. Assume that for any $\mathbf{x} \in D$ the initial value problem $\dot{\mathbf{v}}=G(\mathbf{v}), \mathbf{v}(0)=\mathbf{x}$ has a unique solution $\mathbf{v}_{\mathbf{x}}(t), t \in \mathbb{R}$. For any $t \in \mathbb{R}$ and $\mathbf{x} \in D$ let $F_{t}(\mathbf{x})=\mathbf{v}_{\mathbf{x}}(t)$. Then the maps $F_{t}: D \rightarrow D, t \in \mathbb{R}$ describe evolution of a dynamical system governed by the ODEs. Since the system of ODEs is autonomous, it follows that $F_{t} F_{s}=F_{t+s}$ for all $t, s \in \mathbb{R}$ so that $\phi(t, \mathbf{x})=F_{t}(\mathbf{x})$ is a flow on D.

Orbits

Suppose $\phi: G \curvearrowright X$ is a group action. Consider a relation \sim on the set X such that $x \sim y$ if and only if $x=g y$ for some $g \in G$.
Proposition The relation \sim is an equivalence relation.
The equivalence class of a point $x \in X$ consists of all points of the form $g x, g \in G$. It is called the orbit of x under the action ϕ and denoted $G x$ or $\operatorname{Orb}_{\phi}(x)$.
The term "orbit" is motivated by the flows that describe celestial motions.
The action $\phi: G \curvearrowright X$ is called transitive if the entire set X forms a single orbit. For example, the adjoint actions of the group G on itself (both left and right) are transitive.
The extreme opposite of a transitive action is the trivial action, for which every point of X is a separate orbit.

Stabilizers

Suppose $\phi: G \curvearrowright X$ is a group action.
Given an element $g \in G$, let $\operatorname{Fix}_{\phi}(g)=\{x \in X \mid g x=x\}$. Elements of $\mathrm{Fix}_{\phi}(g)$ are called fixed points of g (with respect to the action ϕ).
Given a point $x \in X$, let $\operatorname{Stab}_{\phi}(x)=\{g \in G \mid g x=x\}$. Then $\operatorname{Stab}_{\phi}(x)$ is a subgroup of G called the stabilizer (or isotropy group) of x.

Theorem For any point $x \in X$, the number of elements in the orbit of x is equal to the index of its stabilizer:

$$
\left|\operatorname{Orb}_{\phi}(x)\right|=\left(G: \operatorname{Stab}_{\phi}(x)\right) .
$$

Idea of the proof: $g_{1} x=g_{2} x \Longleftrightarrow g_{1}$ and g_{2} are in the same coset of the subgroup $\operatorname{Stab}_{\phi}(x)$.

Cayley's Theorem

Suppose $\phi: G \curvearrowright X$ is a group action.
The action ϕ is called faithful if $T_{g} \neq T_{h}$ whenever $g \neq h$, where $T_{g}(x)=g x$. In other words, each element of G acts on X in a distinct way. In the case of a faithful action, the groups G and $\left\{T_{g}\right\}_{g \in G}$ are isomorphic. The action ϕ is called free if $\operatorname{Stab}_{\phi}(x)=\{e\}$ for all $x \in X$. It is called totally non-free if $\operatorname{Stab}_{\phi}(x) \neq \operatorname{Stab}_{\phi}(y)$ whenever $x \neq y$.

Theorem (Cayley) The left adjoint action of any group G is free and hence faithful. Consequently, any group is isomorphic to a transformation group.

Example. \mathbb{R} with addition.
The left adjoint action is given by $\phi(g, x)=g+x$. The corresponding permutation representation is the group of translations of the real line $T_{c}(x)=x+c, c \in \mathbb{R}$.

Problem. Prove that $D_{6} \cong S_{3} \times \mathbb{Z}_{2}$.

The group D_{6} is the group of symmetries of a regular hexagon. First we consider the action of D_{6} on three long diagonals of the hexagon (green segments). After labeling those diagonals by 1,2 and 3 , it gives rise to a homomorphism $\phi: D_{6} \rightarrow S_{3}$. Next we consider the action of D_{6} on two equilateral triangles inscribed into the regular hexagon (red triangles). This gives rise to a homomorphism $\psi: D_{6} \rightarrow \mathbb{Z}_{2}$. Finally, we define a map $f: D_{6} \rightarrow S_{3} \times \mathbb{Z}_{2}$ by $f(T)=(\phi(T), \psi(T))$. This map is also a homomorphism. We check that the kernel of f is trivial. Hence f is injective. As $\left|D_{6}\right|=\left|S_{3} \times \mathbb{Z}_{2}\right|=12$, we conclude that f is bijective.

