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Lecture 13:
Transformation groups (continued).
Group actions.



Groups of symmetries

Definition. A transformation f : R” — R" is called a motion
(or a rigid motion) if it preserves distances between points.

Theorem All motions of R” form a transformation group.
Any motion f : R” — R" can be represented as

f(x) = Ax + xo, where xo € R” and A is an orthogonal
matrix (ATA = AAT =1).

Given a geometric figure F C R"”, a symmetry of F is a
motion of R” that preserves F. All symmetries of F form a
transformation group.

Example. e The dihedral group D, is the group of
symmetries of a regular n-gon. It consists of 2n elements:
n reflections, n—1 rotations by angles 2mk/n,
k=1,2,...,n—1, and the identity function.



Equlateral triangle

Any symmetry of a polygon maps vertices to
vertices. Therefore it induces a permutation on the
set of vertices. Moreover, the symmetry is uniquely
recovered from the permutation.

In the case of the equilateral triangle, any
permutation of vertices comes from a symmetry.



Square

In the case of the square, not every permutation
of vertices comes from a symmetry of the square.
The reason is that a symmetry must map adjacent
vertices to adjacent vertices.



Regular tetrahedron

Any symmetry of a polyhedron maps vertices to
vertices. In the case of the regular tetrahedron, any
permutation of vertices comes from a symmetry.



Rotations of the circle ,

v

Let R, :S! — S! be the rotation of the circle S* by angle
a € R. All rotations R,, « € R form a transformation
group. Namely, R\Rs = Ryys5, Ry'=R_,, and Ry =id.

The group of rotations is a subgroup of the group of all
symmetries of the circle (the other symmetries are reflections).



Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called
an automorphism of G.

Automorphisms are “symmetries” of the group as an algebraic
structure. All automorphisms of a given group G form a
transformation group denoted Aut(G).

Example. e Conjugation.
Take any g € G and defineamap iz : G = G by

ig(x) = &g -t for all x€ G. Then ig(xy) = g(xy)g™*
=gx(g 'g)yg ' = (gxg ')(gyg ') = ig(x)ig(y). Hence
ig is @ homomorphism. Further ig(in(x)) = ig(hxh_ )
= g(hxh™H)g™ = (gh)x(gh)™ = = ign(x). Hence ig o iy = igh
for all g,h € G. In particular, Ig 0 g-1 = Ig-10 g = Ie = idg.
Therefore iz—1 = (i;) ™! so that i, is buectlve

Automorphisms of the form i, are called inner. They form a
group Inn(G), which is a normal subgroup of Aut(G).



Group action

Definition. An action ¢ of a group G on a set X (denoted
¢: G~ X)is a function ¢ : G x X — X such that

e ¢(gh,x) = ¢(g,d(h,x)) forall g,he G and x € X;
e ¢(e,x) = x for all x € X.

Typically, the element ¢(g, x) is denoted gx. Then the above
conditions can be rewritten as g(hx) = (gh)x and ex = x.

The action ¢ can (and should) be regarded as a collection of
transformations T;: X —X, g€ G, given by T.(x)=0¢(g,x).
It follows from the definition that Ty T, = T, T,1 = Tg_l,
and T, =idx. Hence {T,}zcc is a transformation group
and g — T, is a homomorphism of the group G to the
symmetric group Sx (called a permutation representation).

The group actions can be used to represent a given group as a
transformation group or to parametrize a transformation group
by an abstract group.



Examples of group actions

e Trivial action

Any group G acts on any nonempty set X; the action
¢: G~ X is given by ¢(g,x) = x.

e Scalar multiplication

The multiplicative group R\ {0} acts on any vector space V;
the action ¢ : R\ {0} ~ V is given by ¢(\,v) = Av.

e Natural action of a transformation group

G is a subgroup of Sx (all permutations of the set X); the
action ¢ : G ~ X is given by ¢(f,x) = f(x).

e Koopman representation

G is a subgroup of Sy; it acts on the vector space F(X,R) of
functions f : X — R by change of the variable. The action
¢: G~ F(X,R) is given by ¢(g,f)=fogt. Note that
(fogi)og ' =fo(ge)™



Examples of group actions

e Left adjoint action

Any group G acts on itself; the action ¢ : G ~ G is given by
o(g, x) = gx.

e Right adjoint action

Any group G acts on itself; the action ¢ : G ~ G is given by
#(g,x) = xg*. Note that (xg; g, ' = x(gg1) "

e Conjugation

Any group G acts on itself; the action ¢ : G ~ G is given by
®(g,x) = gxg~t. This action is by automorphisms.

e Action on cosets of a subgroup

Any group G acts on the factor space G/H by a subgroup H
(where H need not be normal); the action ¢ : G ~ G/H is

given by ¢(g, xH) = (gx)H.



An action of the additive group R is called a flow.

Example. Consider an autonomous system of n ordinary
differential equations of the first order

X1 = gl(X17 X2, ... aXn)a
X2 = g2(X17 X2, ... aXn)a
Xp = gn(XlaX2a v >Xn)>
where g1, 8, ...,g, are differentiable functions defined in a

domain D C R". In vector form, v = G(v), where

G : D — R" is a vector field. Assume that for any x € D
the initial value problem v = G(v), v(0) = x has a unique
solution vy(t), t € R. Forany t € R and x € D let

F:(x) = vy(t). Then the maps F,: D — D, t € R describe
evolution of a dynamical system governed by the ODEs.

Since the system of ODEs is autonomous, it follows that

F:Fs = Fiis forall t,;s € R so that ¢(t,x) = Fi(x) is a flow
on D.



Orbits

Suppose ¢ : G ~ X is a group action. Consider a relation ~
on the set X such that x ~ y if and only if x = gy for some
geG.

Proposition The relation ~ is an equivalence relation.

The equivalence class of a point x € X consists of all points
of the form gx, g € G. It is called the orbit of x under the
action ¢ and denoted Gx or Orbgy(x).

The term “orbit” is motivated by the flows that describe
celestial motions.

The action ¢ : G ~ X is called transitive if the entire set X
forms a single orbit. For example, the adjoint actions of the
group G on itself (both left and right) are transitive.

The extreme opposite of a transitive action is the trivial
action, for which every point of X is a separate orbit.



Stabilizers

Suppose ¢ : G ~ X is a group action.

Given an element g € G, let Fix,(g) = {x € X | gx = x}.
Elements of Fix,(g) are called fixed points of g (with
respect to the action ¢).

Given a point x € X, let Staby(x) = {g € G | gx = x}.
Then Stabg(x) is a subgroup of G called the stabilizer (or
isotropy group) of x.

Theorem For any point x € X, the number of elements in
the orbit of x is equal to the index of its stabilizer:

|Orbg(x)| = (G : Stabg(x)).

Idea of the proof: gix = gox <= g1 and g» are in the same
coset of the subgroup Staby(x).



Cayley’s Theorem
Suppose ¢ : G ~ X is a group action.

The action ¢ is called faithful if T, # T, whenever g # h,
where T.(x) = gx. In other words, each element of G acts
on X in a distinct way. In the case of a faithful action, the
groups G and {T,},c¢ are isomorphic. The action ¢ is
called free if Staby(x) = {e} for all x € X. It is called
totally non-free if Staby(x) # Stab,(y) whenever x # y.

Theorem (Cayley) The left adjoint action of any group G is
free and hence faithful. Consequently, any group is isomorphic
to a transformation group.

Example. R with addition.

The left adjoint action is given by ¢(g,x) =g+ x. The
corresponding permutation representation is the group of
translations of the real line T.(x) =x+¢, c€R.



Problem. Prove that Dg = S3 X Zo.

/No<7\

N
.

The group Dg is the group of symmetries of a regular hexagon.
First we consider the action of Dg on three long diagonals of
the hexagon (green segments). After labeling those diagonals
by 1, 2 and 3, it gives rise to a homomorphism ¢ : Dg — Ss.
Next we consider the action of Dg on two equilateral triangles
inscribed into the regular hexagon (red triangles). This gives
rise to a homomorphism ¢ : Dg — Z,. Finally, we define a
map f: D — S3x Zy by f(T)=(4(T),%¥(T)). This map
is also a homomorphism. We check that the kernel of f is
trivial. Hence f is injective. As |Ds| = |S5 X Zy| = 12, we
conclude that f is bijective.



