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Lecture 13:
Transformation groups (continued).

Group actions.



Groups of symmetries

Definition. A transformation f : Rn → R
n is called a motion

(or a rigid motion) if it preserves distances between points.

Theorem All motions of Rn form a transformation group.
Any motion f : Rn → R

n can be represented as
f (x) = Ax + x0, where x0 ∈ R

n and A is an orthogonal
matrix (ATA = AAT = I ).

Given a geometric figure F ⊂ R
n, a symmetry of F is a

motion of Rn that preserves F . All symmetries of F form a
transformation group.

Example. • The dihedral group Dn is the group of
symmetries of a regular n-gon. It consists of 2n elements:
n reflections, n−1 rotations by angles 2πk/n,
k = 1, 2, . . . , n−1, and the identity function.



Equlateral triangle

Any symmetry of a polygon maps vertices to

vertices. Therefore it induces a permutation on the
set of vertices. Moreover, the symmetry is uniquely
recovered from the permutation.

In the case of the equilateral triangle, any
permutation of vertices comes from a symmetry.



Square

In the case of the square, not every permutation
of vertices comes from a symmetry of the square.

The reason is that a symmetry must map adjacent
vertices to adjacent vertices.



Regular tetrahedron

Any symmetry of a polyhedron maps vertices to

vertices. In the case of the regular tetrahedron, any
permutation of vertices comes from a symmetry.



Rotations of the circle

α

Let Rα : S1 → S1 be the rotation of the circle S1 by angle
α ∈ R. All rotations Rα, α ∈ R form a transformation
group. Namely, RαRβ = Rα+β, R−1

α = R−α, and R0 = id.

The group of rotations is a subgroup of the group of all
symmetries of the circle (the other symmetries are reflections).



Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called
an automorphism of G .

Automorphisms are “symmetries” of the group as an algebraic
structure. All automorphisms of a given group G form a
transformation group denoted Aut(G ).

Example. • Conjugation.

Take any g ∈ G and define a map ig : G → G by
ig (x) = gxg−1 for all x ∈ G . Then ig (xy ) = g(xy )g−1

= gx(g−1g)yg−1 = (gxg−1)(gyg−1) = ig(x)ig (y ). Hence
ig is a homomorphism. Further, ig(ih(x)) = ig(hxh

−1)
= g(hxh−1)g−1 = (gh)x(gh)−1 = igh(x). Hence ig ◦ ih = igh
for all g , h ∈ G . In particular, ig ◦ ig−1 = ig−1 ◦ ig = ie = idG .
Therefore ig−1 = (ig )

−1 so that ig is bijective.

Automorphisms of the form ig are called inner. They form a
group Inn(G ), which is a normal subgroup of Aut(G ).



Group action

Definition. An action φ of a group G on a set X (denoted
φ : G y X ) is a function φ : G × X → X such that

• φ(gh, x) = φ(g , φ(h, x)) for all g , h ∈ G and x ∈ X ;

• φ(e, x) = x for all x ∈ X .

Typically, the element φ(g , x) is denoted gx . Then the above
conditions can be rewritten as g(hx) = (gh)x and ex = x .

The action φ can (and should) be regarded as a collection of
transformations Tg :X→X , g ∈G , given by Tg (x)=φ(g , x).
It follows from the definition that TgTh = Tgh, Tg−1 = T−1

g ,
and Te = idX . Hence {Tg}g∈G is a transformation group
and g 7→ Tg is a homomorphism of the group G to the
symmetric group SX (called a permutation representation).

The group actions can be used to represent a given group as a
transformation group or to parametrize a transformation group
by an abstract group.



Examples of group actions

• Trivial action
Any group G acts on any nonempty set X ; the action
φ : G y X is given by φ(g , x) = x .

• Scalar multiplication
The multiplicative group R \ {0} acts on any vector space V ;
the action φ : R \ {0} y V is given by φ(λ, v) = λv.

• Natural action of a transformation group
G is a subgroup of SX (all permutations of the set X ); the
action φ : G y X is given by φ(f , x) = f (x).

• Koopman representation
G is a subgroup of SX ; it acts on the vector space F(X ,R) of
functions f : X → R by change of the variable. The action
φ : G y F(X ,R) is given by φ(g , f ) = f ◦ g−1. Note that
(f ◦ g−1

1
) ◦ g−1

2
= f ◦ (g2g1)

−1.



Examples of group actions

• Left adjoint action
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = gx .

• Right adjoint action
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = xg−1. Note that (xg−1

1 )g−1

2 = x(g2g1)
−1.

• Conjugation
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = gxg−1. This action is by automorphisms.

• Action on cosets of a subgroup
Any group G acts on the factor space G/H by a subgroup H

(where H need not be normal); the action φ : G y G/H is
given by φ(g , xH) = (gx)H.



An action of the additive group R is called a flow.

Example. Consider an autonomous system of n ordinary
differential equations of the first order















ẋ1 = g1(x1, x2, . . . , xn),
ẋ2 = g2(x1, x2, . . . , xn),
. . . . . . . . .
ẋn = gn(x1, x2, . . . , xn),

where g1, g2, . . . , gn are differentiable functions defined in a
domain D ⊂ R

n. In vector form, v̇ = G (v), where
G : D → R

n is a vector field. Assume that for any x ∈ D

the initial value problem v̇ = G (v), v(0) = x has a unique
solution vx(t), t ∈ R. For any t ∈ R and x ∈ D let
Ft(x) = vx(t). Then the maps Ft : D → D, t ∈ R describe
evolution of a dynamical system governed by the ODEs.

Since the system of ODEs is autonomous, it follows that
FtFs = Ft+s for all t, s ∈ R so that φ(t, x) = Ft(x) is a flow
on D.



Orbits

Suppose φ : G y X is a group action. Consider a relation ∼
on the set X such that x ∼ y if and only if x = gy for some
g ∈ G .

Proposition The relation ∼ is an equivalence relation.

The equivalence class of a point x ∈ X consists of all points
of the form gx , g ∈ G . It is called the orbit of x under the
action φ and denoted Gx or Orbφ(x).

The term “orbit” is motivated by the flows that describe
celestial motions.

The action φ : G y X is called transitive if the entire set X
forms a single orbit. For example, the adjoint actions of the
group G on itself (both left and right) are transitive.

The extreme opposite of a transitive action is the trivial
action, for which every point of X is a separate orbit.



Stabilizers

Suppose φ : G y X is a group action.

Given an element g ∈ G , let Fixφ(g) = {x ∈ X | gx = x}.
Elements of Fixφ(g) are called fixed points of g (with
respect to the action φ).

Given a point x ∈ X , let Stabφ(x) = {g ∈ G | gx = x}.
Then Stabφ(x) is a subgroup of G called the stabilizer (or
isotropy group) of x .

Theorem For any point x ∈ X , the number of elements in
the orbit of x is equal to the index of its stabilizer:

|Orbφ(x)| = (G : Stabφ(x)).

Idea of the proof: g1x = g2x ⇐⇒ g1 and g2 are in the same
coset of the subgroup Stabφ(x).



Cayley’s Theorem

Suppose φ : G y X is a group action.

The action φ is called faithful if Tg 6= Th whenever g 6= h,
where Tg(x) = gx . In other words, each element of G acts
on X in a distinct way. In the case of a faithful action, the
groups G and {Tg}g∈G are isomorphic. The action φ is
called free if Stabφ(x) = {e} for all x ∈ X . It is called
totally non-free if Stabφ(x) 6= Stabφ(y ) whenever x 6= y .

Theorem (Cayley) The left adjoint action of any group G is
free and hence faithful. Consequently, any group is isomorphic
to a transformation group.

Example. R with addition.

The left adjoint action is given by φ(g , x) = g + x . The
corresponding permutation representation is the group of
translations of the real line Tc(x) = x + c, c ∈ R.



Problem. Prove that D6
∼= S3 × Z2.

The group D6 is the group of symmetries of a regular hexagon.
First we consider the action of D6 on three long diagonals of
the hexagon (green segments). After labeling those diagonals
by 1, 2 and 3, it gives rise to a homomorphism φ : D6 → S3.
Next we consider the action of D6 on two equilateral triangles
inscribed into the regular hexagon (red triangles). This gives
rise to a homomorphism ψ : D6 → Z2. Finally, we define a
map f : D6 → S3 × Z2 by f (T ) = (φ(T ), ψ(T )). This map
is also a homomorphism. We check that the kernel of f is
trivial. Hence f is injective. As |D6| = |S3 × Z2| = 12, we
conclude that f is bijective.


