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Modern Algebra I

Lecture 15:
Fields (continued).

Advanced algebraic structures.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy = 0 implies x = 0 or y = 0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).

A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).

rings ⊃ domains ⊃ integral domains ⊃ fields
⊃ division rings ⊃



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an abelian group under addition,
• F \ {0} is an abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Characteristic of a field

A field F is said to be of nonzero characteristic if

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n summands

= 0 for some positive integer n.

The smallest integer with this property is called the
characteristic of F . Otherwise the field F has

characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Zp (p prime) has characteristic p.

In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

(1 + · · ·+ 1
︸ ︷︷ ︸

n summands

)(1 + · · ·+ 1
︸ ︷︷ ︸

m summands

) = 1 + · · · + 1
︸ ︷︷ ︸

nm summands

.



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

× 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a b 1
b 0 b 1 a



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

Remarks on solution. First we fill in the multiplication table.
Since 0x = 0 and 1x = x for every x ∈ F , it remains to
determine only a2, b2, and ab = ba. Using the fact that
{1, a, b} is a multiplicative group, we obtain that ab = 1,
a2 = b, and b2 = a.

As for the addition table, we have x + 0 = x for every x ∈ F .
Next step is to determine 1 + 1. By Lagrange’s Theorem, the
order of 1 in the additive group F is a divisor of 4. Since that
order equals the characteristic of the field F , it is a prime
number. Hence the order is 2 so that 1 + 1 = 0. Then
x + x = 1x + 1x = (1 + 1)x = 0x = 0 for all x ∈ F . The
rest is filled in using the cancellation (“sudoku”) laws.



Vector spaces over a field

Definition. Given a field F , a vector space V over F is an
additive abelian group endowed with a mixed operation
φ : F × V → V called scalar multiplication or scaling.

Elements of V and F are referred to respectively as vectors
and scalars. The scalar multiple φ(λ, v ) is denoted λv .

The scalar multiplication is to satisfy the following axioms:

(V0) for all v ∈ V and λ ∈ F , λv is an element of V ;
(V1) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F ;
(V2) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;
(V3) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;
(V4) 1v = v for all v ∈ V .

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F .
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate

vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with
entries in F .

• The space F [X ] of polynomials
p(x) = a0+ a1X + · · ·+ anX

n with coefficients in F .

• Any field F ′ that is an extension of F (i.e.,

F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,

C is a vector space over R and over Q, R is a
vector space over Q.



Counterexample. • Consider the abelian group

V = Z with the following scalar multiplication over
the field F = Q (“selective scaling”):

λ⊙v =

{
λv if λv ∈Z,
v otherwise

for any v ∈Z and λ∈Q.

The group (Z,+) with the scalar multiplication ⊙ is not a
vector space over Q. One reason is that the distributive law
(λ+ µ)⊙ v = λ⊙ v + µ⊙ v does not hold.

For example, let λ = µ = 1/2 and v = 1. Then
(1
2
+ 1

2
)⊙ v = 1⊙ v = v = 1 while 1

2
⊙ v + 1

2
⊙ v = v + v = 2.

Remark. The essential information about the scalar
multiplication ⊙ used in the above counterexample is that
1⊙ v = v and 1

2
⊙ v is an integer. It follows that the

additive group Z, in principle, cannot be made into a vector
space over Q.



Linear independence over Q

Since the set R of real numbers and the set Q of rational
numbers are fields, we can regard R as a vector space over Q.
Real numbers r1, r2, . . . , rn are said to be linearly
independent over Q if they are linearly independent as
vectors in that vector space.

Example. 1 and
√
2 are linearly independent over Q.

Assume a · 1 + b
√
2 = 0 for some a, b ∈ Q. We have to

show that a = b = 0.

Indeed, b = 0 as otherwise
√
2 = −a/b, a rational number.

Then a = 0 as well.

In general, two nonzero real numbers r1 and r2 are linearly
independent over Q if r1/r2 is irrational.



Linear independence over Q

Example. 1,
√
2, and

√
3 are linearly independent over Q.

Assume a + b
√
2 + c

√
3 = 0 for some a, b, c ∈ Q.

We have to show that a = b = c = 0.

a + b
√
2 + c

√
3 = 0 =⇒ a + b

√
2 = −c

√
3

=⇒ (a + b
√
2)2 = (−c

√
3)2

=⇒ (a2 + 2b2 − 3c2) + 2ab
√
2 = 0.

Since 1 and
√
2 are linearly independent over Q, we obtain

a2 + 2b2 − 3c2 = 2ab = 0. In particular, a = 0 or b = 0.

Then a + c
√
3 = 0 or b

√
2 + c

√
3 = 0. However 1 and

√
3

are linearly independent over Q as well as
√
2 and

√
3. Thus

a = b = c = 0.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1, 1+1, 1+1+1, . . . Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is pk ,
where p is a prime number.

Sketch of the proof: Let p be the characteristic of F . By the
above, p > 0. Therefore p is a prime number. Let F ′ be the
set of all elements 1, 1+1, 1+1+1, . . . Clearly, F ′ consists of
p elements. One can show that F ′ is a subfield (canonically
identified with Zp). It follows that F has pk elements, where
k = dim F as a vector space over F ′.



Algebra over a field

Definition. An algebra A over a field F (or F -algebra) is a
vector space over F with a multiplication which is a bilinear
operation on A. That is, the product xy is both a linear
function of x and a linear function of y .

To be precise, the following axioms are to be satisfied:

(A0) for all x , y ∈ A, the product xy is an element of A;
(A1) x(y+z) = xy+xz and (y+z)x = yx+zx for x , y , z ∈A;
(A2) (λx)y = λ(xy ) = x(λy ) for all x , y ∈ A and λ ∈ F .

An F -algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F -algebra A is a Lie algebra if the multiplication (usually
denoted [x , y ] and called Lie bracket in this case) satisfies:

(Antisymmetry): [x , y ] = −[y , x ] for all x , y ∈ A;
(Jacobi’s identity): [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0
for all x , y , z ∈ A.



Examples of associative algebras:

• The space Mn(F ) of n×n matrices with entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · ·+ anX

n with coefficients in F .

• The space of all functions f : S → F on a set S taking
values in a field F .

• Any field F ′ that is an extension of a field F is an
associative algebra over F .

Examples of Lie algebras:

• R3 with the cross product is a Lie algebra over R.

• Any associative algebra A with a Lie bracket (called the
commutator) defined by [x , y ] = xy − yx .



Complex numbers as an R-algebra

Complex numbers can be defined as a certain

2-dimensional algebra over the field R. We have
a distinguished basis 1, i . Hence every complex

number z is uniquely represented as z = x1+ yi ,
where x , y ∈ R.

Since multiplication is a bilinear function, it is

enough to define z1 · z2 in the case z1, z2 ∈ {1, i}.
We set 1 · 1 = 1, 1 · i = i · 1 = i and i · i = −1.

Because of bilinearity of the product, it is easy to
check that 1 · z = z · 1, z1 · z2 = z2 · z1 and
(z1 · z2) · z3 = z1 · (z2 · z3).


