MATH 415

Modern Algebra I
Lecture 16:
Some examples of rings. Field of quotients.

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all $x, y \in R, x+y$ is an element of R;
(A1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(A2) there exists an element, denoted 0 , in R such that $x+0=0+x=x$ for all $x \in R$;
(A3) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(A4) $x+y=y+x$ for all $x, y \in R$;
(M0) for all $x, y \in R, \quad x y$ is an element of R;
(M1) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(D) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

Ring of functions

Let R be a ring and S be a nonempty set. Denote by $\mathcal{F}(S, R)$ the set of all functions $f: S \rightarrow R$. Given
$f, g \in \mathcal{F}(S, R)$, we let $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$ for all $x \in S$. That is, to add (resp. multiply) functions, we add (resp. multiply) their values at every point. Then $\mathcal{F}(S, R)$ is a ring.

The ring $\mathcal{F}(S, R)$ inherits many properties from the ring R, with one important exception. If R is a nontrivial ring and S has more than one element, then the ring $\mathcal{F}(S, R)$ has divisors of zero. Indeed, take any point $x_{0} \in S$, any nonzero element $r \in R$, and let

$$
f_{1}(x)=\left\{\begin{array}{ll}
r & \text { if } x=x_{0}, \\
0 & \text { if } x \in S \backslash\left\{x_{0}\right\} ;
\end{array} \quad f_{2}(x)= \begin{cases}0 & \text { if } x=x_{0}, \\
r & \text { if } x \in S \backslash\left\{x_{0}\right\} .\end{cases}\right.
$$

Then the functions f_{1} and f_{2} are nonzero elements of the ring $\mathcal{F}(S, R)$ while $f_{1} f_{2}=0$.

Ring of matrices

Let R be a ring. For any integers $m, n>0$, denote by $\mathcal{M}_{m, n}(R)$ the set of all $m \times n$ matrices with entries from R. Given two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ in $\mathcal{M}_{m, n}(R)$, we let $A+B=\left(c_{i j}\right)$ and $A-B=\left(d_{i j}\right)$, where $c_{i j}=a_{i j}+b_{i j}$ and $d_{i j}=a_{i j}-b_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$. Given matrices $A=\left(a_{i j}\right) \in \mathcal{M}_{m, n}(R)$ and $B=\left(b_{i j}\right) \in \mathcal{M}_{n, p}(R)$, we let $A B=\left(c_{i j}\right)$, where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$, $1 \leq i \leq m, 1 \leq j \leq p$.
Matrix multiplication is associative. Indeed, let $A=\left(a_{i j}\right)$
$\in \mathcal{M}_{m, n}(R), B=\left(b_{j k}\right) \in \mathcal{M}_{n, p}(R)$ and $C=\left(c_{k \ell}\right) \in \mathcal{M}_{p, q}(R)$. Then $(A B) C=\left(d_{i \ell}\right)$ and $A(B C)=\left(d_{i \ell}^{\prime}\right)$ are matrices in $\mathcal{M}_{n, q}(R)$. Using distributive laws in R, we obtain that

$$
d_{i \ell}=\sum_{k=1}^{p} \sum_{j=1}^{n}\left(a_{i j} b_{j k}\right) c_{k \ell}, d_{i \ell}^{\prime}=\sum_{j=1}^{n} \sum_{k=1}^{p} a_{i j}\left(b_{j k} c_{k \ell}\right) .
$$

Hence $(A B) C=A(B C)$ since R is a ring.
As a consequence, square matrices in $\mathcal{M}_{n, n}(R)$ form a ring.

Direct product of rings

Suppose $R_{1}, R_{2}, \ldots, R_{n}$ are rings. We define addition and multiplication on the Cartesian product $R_{1} \times R_{2} \times \cdots \times R_{n}$ by

$$
\begin{gathered}
\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(r_{1}+r_{1}^{\prime}, r_{2}+r_{2}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right), \\
\left(r_{1}, r_{2}, \ldots, r_{n}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}, \ldots, r_{n} r_{n}^{\prime}\right)
\end{gathered}
$$

for all $r_{i}, r_{i}^{\prime} \in R_{i}, 1 \leq i \leq n$.
Then $R_{1} \times R_{2} \times \cdots \times R_{n}$ is a ring called the direct product of rings $R_{1}, R_{2}, \ldots, R_{n}$.

The ring $R_{1} \times R_{2} \times \cdots \times R_{n}$ is commutative if each of the rings $R_{1}, R_{2}, \ldots, R_{n}$ is commutative. It is a ring with unity if each of the rings $R_{1}, R_{2}, \ldots, R_{n}$ has the unity.

If at least two of the rings $R_{1}, R_{2}, \ldots, R_{n}$ are nontrivial, then the direct product $R_{1} \times R_{2} \times \cdots \times R_{n}$ admits divisors of zero.

Complex numbers

\mathbb{C} : complex numbers.
Complex number:

$$
\begin{aligned}
& z=x+i y, \\
& \text { where } x, y \in \mathbb{R} \text { and } i^{2}=-1 \text {. }
\end{aligned}
$$

$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right), \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$. $z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2}$.

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}}
$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

Remark. A sequence of complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, \ldots$ converges to $z=x+i y$ if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

Theorem 1 If $z=x+i y, x, y \in \mathbb{R}$, then

$$
e^{z}=e^{x}(\cos y+i \sin y)
$$

In particular, $e^{i \phi}=\cos \phi+i \sin \phi, \phi \in \mathbb{R}$.
Theorem $2 e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i \phi}=\cos \phi+i \sin \phi$ for all $\phi \in \mathbb{R}$.
Proof: $e^{i \phi}=1+i \phi+\frac{(i \phi)^{2}}{2!}+\cdots+\frac{(i \phi)^{n}}{n!}+\cdots$
The sequence $1, i, i^{2}, i^{3}, \ldots, i^{n}, \ldots$ is periodic:
$\underbrace{1, i,-1,-i}, \underbrace{1, i,-1,-i}, \ldots$
It follows that

$$
\begin{aligned}
& e^{i \phi}=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\cdots+(-1)^{k} \frac{\phi^{2 k}}{(2 k)!}+\cdots \\
& +i\left(\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots+(-1)^{k} \frac{\phi^{2 k+1}}{(2 k+1)!}+\cdots\right) \\
& =\cos \phi+i \sin \phi .
\end{aligned}
$$

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)} .
$$

Complex numbers as an \mathbb{R}-algebra

Complex numbers can be defined as a certain 2-dimensional algebra over the field \mathbb{R}. We have a distinguished basis $\mathbf{1}, i$. Hence every complex number z is uniquely represented as $z=x \mathbf{1}+y i$, where $x, y \in \mathbb{R}$.

Since multiplication is a bilinear function, it is enough to define $z_{1} \cdot z_{2}$ in the case $z_{1}, z_{2} \in\{\mathbf{1}, i\}$. We set $\mathbf{1} \cdot \mathbf{1}=\mathbf{1}, \mathbf{1} \cdot i=i \cdot \mathbf{1}=i$ and $i \cdot i=-\mathbf{1}$.

Because of bilinearity of the product, it is easy to check that $\mathbf{1} \cdot z=z \cdot \mathbf{1}, z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$ and $\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)$.

Quaternions

The Hamilton quaternions \mathbb{H} can be defined as a certain 4-dimensional algebra over the field \mathbb{R}. We have a distinguished basis $\mathbf{1}, i, j, k$. Hence every quaternion q is uniquely represented as
$z=a \mathbf{1}+b i+c j+d k$, where $a, b, c, d \in \mathbb{R}$.
Since multiplication is a bilinear function, it is enough to define $q_{1} \cdot q_{2}$ for $q_{1}, q_{2} \in\{\mathbf{1}, i, j, k\}$. We set $\mathbf{1} \cdot \mathbf{1}=\mathbf{1}, \mathbf{1} \cdot i=i \cdot \mathbf{1}=i, \mathbf{1} \cdot j=j \cdot \mathbf{1}=j$, $\mathbf{1} \cdot k=k \cdot \mathbf{1}=k, i \cdot i=j \cdot j=k \cdot k=-\mathbf{1}, i \cdot j=k$, $j \cdot i=-k, j \cdot k=i, k \cdot j=-i, k \cdot i=j, i \cdot k=-j$.

Theorem \mathbb{H} is a non-commutative division ring.

Lemma $1 q \cdot \mathbf{1}=\mathbf{1} \cdot q=q$ for all $q \in \mathbb{H}$.
Proof. Since $f_{1}(q)=q \cdot \mathbf{1}, f_{2}(q)=\mathbf{1} \cdot q$ and $f_{3}(q)=q$ are all linear functions on \mathbb{H}, it is enough to prove the equalities in the case when $q \in\{\mathbf{1}, i, j, k\}$. In this case they follow from the definition of multiplication.

Lemma 2 For any $a, b \in \mathbb{R}$ and $q \in \mathbb{H}$ we have $(a \mathbf{1})+(b \mathbf{1})=(a+b) \mathbf{1},(a \mathbf{1}) \cdot(b \mathbf{1})=(a b) \mathbf{1}$ and $(a 1) \cdot q=a q$.

In view of Lemma 2, we can identify any quaternion of the form al with the real number a so that $\mathbb{R} \subset \mathbb{H}$. This also allows to consider scalar multiplication on \mathbb{H} as a special case of multiplication of quaternions. In particular, we can use the same notation $q_{1} q_{2}$ for both kinds of multiplication.

Lemma 3 Multiplication of quaternions is associative. Idea of the proof. Since $\left(q_{1} q_{2}\right) q_{3}$ and $q_{1}\left(q_{2} q_{3}\right)$ are both trilinear functions of $q_{1}, q_{2}, q_{3} \in \mathbb{H}$, it is enough to prove the equality $\left(q_{1} q_{2}\right) q_{3}=q_{1}\left(q_{2} q_{3}\right)$ in the case when $q_{1}, q_{2}, q_{3} \in\{\mathbf{1}, i, j, k\}$.

For any quaternion $q=a+b i+c j+d k$, we define the conjugate quaternion by $\bar{q}=a-b i-c j-d k$ and the modulus of q by $|q|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$.

Lemma $4 q \bar{q}=\bar{q} q=|q|^{2}$ for all $q \in \mathbb{H}$.
Lemma 5 Every nonzero quaternion q has a multiplicative inverse: $q^{-1}=|q|^{-2} \bar{q}$.

Rational quaternions are quaternions of the form $q=a+b i+c j+d k$, where $a, b, c, d \in \mathbb{Q}$. The rational quaternions also form a division ring.

Integer quaternions are quaternions of the form $q=a+b i+c j+d k$, where $a, b, c, d \in \mathbb{Z}$. The integer quaternions form a ring. This ring has only 8 invertible elements (the units): $\pm 1, \pm i, \pm j, \pm k$. These 8 elements form a group under quaternion multiplication, called the quaternion group and denoted Q_{8}.

Theorem Any non-abelian group of order 8 is isomorphic either to the dihedral group D_{4} or to the quaternion group Q_{8}.

From a ring to a field

Question 1. When a ring R can be extended to a field?
An obvious necessary condition is commutativity. Another necessary condition is absence of zero divisors (which is equivalent to cancellation laws).
Proposition If an element of a ring with unity has a multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a group?
Theorem Any finite semigroup with cancellation is a group.
Theorem If S is a commutative semigroup with cancellation, then it can be extended to an abelian group G. Moreover, if $G=\langle S\rangle$, then any element of G is of the form $b^{-1} a$, where $a, b \in S$. Moreover, if $G=\langle S\rangle$, then the group G is unique up to isomorphism.

Suppose S is a commutative semigroup with cancellation (with multiplicative notation). Consider the direct product $S \times S$. It is also a commutative semigroup with cancellation. For any $(a, b) \in S \times S$ we are going to use an alternative notation $\frac{a}{b}$. Then the operation on $S \times S$ is given by $\frac{a}{b} \cdot \frac{a^{\prime}}{b^{\prime}}=\frac{a a^{\prime}}{b b^{\prime}}$. Let \sim be a relation on $S \times S$ such that

$$
\frac{a_{1}}{b_{1}} \sim \frac{a_{2}}{b_{2}} \text { if and only if } a_{1} b_{2}=a_{2} b_{1} .
$$

Lemma $1 \sim$ is an equivalence relation.
Proof. Reflexivity and symmetry are obvious. To prove transitivity, assume $\frac{a_{1}}{b_{1}} \sim \frac{a_{2}}{b_{2}}$ and $\frac{a_{2}}{b_{2}} \sim \frac{a_{3}}{b_{3}}$, that is, $a_{1} b_{2}=a_{2} b_{1}$ and $a_{2} b_{3}=a_{3} b_{2}$. Using commutativity in S, we obtain $a_{1} b_{3} b_{2}=a_{1} b_{2} b_{3}=a_{2} b_{1} b_{3}=a_{2} b_{3} b_{1}=a_{3} b_{2} b_{1}=a_{3} b_{1} b_{2}$. After cancellation, $a_{1} b_{3}=a_{3} b_{1}$, that is, $\frac{a_{1}}{b_{1}} \sim \frac{a_{3}}{b_{3}}$.

Lemma 2 The relation \sim is compatible with the operation on $S \times S$.

Consider the factor space $G=(S \times S) / \sim$ with the operation induced by the operation on $S \times S$. It is a commutative semigroup. For any $a, b \in S$ we denote the equivalence class of $\frac{a}{b}$ by $\left[\frac{a}{b}\right]$.
Lemma $3\left[\frac{a c}{b c}\right]=\left[\frac{a}{b}\right]$ for all $a, b, c \in S$.
Lemma $4\left[\frac{c}{c}\right]$ is an identity element in G for any $c \in S$.
Lemma $5\left[\frac{b}{a}\right]=\left[\frac{a}{b}\right]^{-1}$ for all $a, b \in S$.
Lemma $6 G$ is an abelian group.
Lemma 7 Let $c \in S$. The map $f: S \rightarrow G$ defined by $f(a)=\left[\frac{a c}{c}\right]$ is an injective homomorphism.
Lemma $8\left[\frac{a}{b}\right]=(f(b))^{-1} f(a)$ for all $a, b \in S$.

Field of quotients

Theorem A ring R with unity can be extended to a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest) field F containing R called the quotient field of R (or the field of quotients). Any element of F is of the form $b^{-1} a$, where $a, b \in R$. The field F is unique up to isomorphism.

Examples. - The quotient field of \mathbb{Z} is \mathbb{Q}.

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.
- The quotient field of $\mathbb{Z}[\sqrt{2}]=\{m+n \sqrt{2} \mid$
$m, n \in \mathbb{Z}\}$ is $\mathbb{Q}[\sqrt{2}]=\{p+q \sqrt{2} \mid p, q \in \mathbb{Q}\}$.

