MATH 415 Modern Algebra I

Lecture 16: Some examples of rings. Field of quotients.

Rings

Definition. A ring is a set R, together with two binary operations usually called **addition** and **multiplication** and denoted accordingly, such that

- *R* is an abelian group under addition,
- *R* is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows: (A0) for all $x, y \in R$, x + y is an element of R; (A1) (x + y) + z = x + (y + z) for all $x, y, z \in R$; (A2) there exists an element, denoted 0, in R such that x + 0 = 0 + x = x for all $x \in R$: (A3) for every $x \in R$ there exists an element, denoted -x, in R such that x + (-x) = (-x) + x = 0; (A4) x + y = y + x for all $x, y \in R$; (M0) for all $x, y \in R$, xy is an element of R; (M1) (xy)z = x(yz) for all $x, y, z \in R$; (D) x(y+z) = xy+xz and (y+z)x = yx+zx for all $x, y, z \in R$.

Ring of functions

Let *R* be a ring and *S* be a nonempty set. Denote by $\mathcal{F}(S, R)$ the set of all functions $f: S \to R$. Given $f, g \in \mathcal{F}(S, R)$, we let (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all $x \in S$. That is, to add (resp. multiply) functions, we add (resp. multiply) their values at every point. Then $\mathcal{F}(S, R)$ is a ring.

The ring $\mathcal{F}(S, R)$ inherits many properties from the ring R, with one important exception. If R is a nontrivial ring and S has more than one element, then the ring $\mathcal{F}(S, R)$ has divisors of zero. Indeed, take any point $x_0 \in S$, any nonzero element $r \in R$, and let

$$f_1(x) = \begin{cases} r & \text{if } x = x_0, \\ 0 & \text{if } x \in S \setminus \{x_0\}; \end{cases} \quad f_2(x) = \begin{cases} 0 & \text{if } x = x_0, \\ r & \text{if } x \in S \setminus \{x_0\}. \end{cases}$$

Then the functions f_1 and f_2 are nonzero elements of the ring $\mathcal{F}(S, R)$ while $f_1 f_2 = 0$.

Ring of matrices

Let *R* be a ring. For any integers m, n > 0, denote by $\mathcal{M}_{m,n}(R)$ the set of all $m \times n$ matrices with entries from *R*. Given two matrices $A = (a_{ij})$ and $B = (b_{ij})$ in $\mathcal{M}_{m,n}(R)$, we let $A + B = (c_{ij})$ and $A - B = (d_{ij})$, where $c_{ij} = a_{ij} + b_{ij}$ and $d_{ij} = a_{ij} - b_{ij}$, $1 \le i \le m$, $1 \le j \le n$. Given matrices $A = (a_{ij}) \in \mathcal{M}_{m,n}(R)$ and $B = (b_{ij}) \in \mathcal{M}_{n,p}(R)$, we let $AB = (c_{ij})$, where $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$, $1 \le i \le m$, $1 \le j \le p$.

Matrix multiplication is associative. Indeed, let $A = (a_{ij})$ $\in \mathcal{M}_{m,n}(R), B = (b_{jk}) \in \mathcal{M}_{n,p}(R)$ and $C = (c_{k\ell}) \in \mathcal{M}_{p,q}(R)$. Then $(AB)C = (d_{i\ell})$ and $A(BC) = (d'_{i\ell})$ are matrices in $\mathcal{M}_{n,q}(R)$. Using distributive laws in R, we obtain that $d_{i\ell} = \sum_{k=1}^{p} \sum_{j=1}^{n} (a_{ij}b_{jk})c_{k\ell}, d'_{i\ell} = \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ij}(b_{jk}c_{k\ell})$. Hence (AB)C = A(BC) since R is a ring.

As a consequence, square matrices in $\mathcal{M}_{n,n}(R)$ form a ring.

Direct product of rings

Suppose R_1, R_2, \ldots, R_n are rings. We define addition and multiplication on the Cartesian product $R_1 \times R_2 \times \cdots \times R_n$ by $(r_1, r_2, \ldots, r_n) + (r'_1, r'_2, \ldots, r'_n) = (r_1 + r'_1, r_2 + r'_2, \ldots, r_n + r'_n),$ $(r_1, r_2, \ldots, r_n)(r'_1, r'_2, \ldots, r'_n) = (r_1r'_1, r_2r'_2, \ldots, r_nr'_n)$ for all $r_i, r'_i \in R_i, 1 \le i \le n$.

Then $R_1 \times R_2 \times \cdots \times R_n$ is a ring called the **direct product** of rings R_1, R_2, \ldots, R_n .

The ring $R_1 \times R_2 \times \cdots \times R_n$ is commutative if each of the rings R_1, R_2, \ldots, R_n is commutative. It is a ring with unity if each of the rings R_1, R_2, \ldots, R_n has the unity.

If at least two of the rings R_1, R_2, \ldots, R_n are nontrivial, then the direct product $R_1 \times R_2 \times \cdots \times R_n$ admits divisors of zero.

Complex numbers

 $\mathbb{C} \colon$ complex numbers.

Complex number:
$$\boxed{z=x+iy}$$
,
where $x,y\in\mathbb{R}$ and $i^2=-1$.
 $i=\sqrt{-1}$: imaginary unit

Alternative notation: z = x + yi.

$$\begin{array}{l} x = \mbox{real part of } z, \\ iy = \mbox{imaginary part of } z \\ y = 0 \implies z = x \mbox{ (real number)} \\ x = 0 \implies z = iy \mbox{ (purely imaginary number)} \end{array}$$

We add, subtract, and multiply complex numbers as polynomials in *i* (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$, $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$.

Given z = x + iy, the complex conjugate of z is $\bar{z} = x - iy$. The modulus of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$. $z^{-1} = \frac{\bar{z}}{|z|^2}$, $(x + iy)^{-1} = \frac{x - iy}{x^2 + y^2}$.

Complex exponentials

Definition. For any
$$z \in \mathbb{C}$$
 let $e^z = 1 + z + rac{z^2}{2!} + \cdots + rac{z^n}{n!} + \cdots$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \dots + \frac{(i\phi)^n}{n!} + \dots$$

The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $1, i, -1, -i, 1, i, -1, -i, \dots$

It follows that

 $=\cos\phi + i\sin\phi.$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

 $x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$ If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2) e^{i(\phi_1 - \phi_2)}.$

Complex numbers as an \mathbb{R} -algebra

Complex numbers can be defined as a certain 2-dimensional algebra over the field \mathbb{R} . We have a distinguished basis $\mathbf{1}, i$. Hence every complex number z is uniquely represented as $z = x\mathbf{1} + yi$, where $x, y \in \mathbb{R}$.

Since multiplication is a bilinear function, it is enough to define $z_1 \cdot z_2$ in the case $z_1, z_2 \in \{1, i\}$. We set $1 \cdot 1 = 1$, $1 \cdot i = i \cdot 1 = i$ and $i \cdot i = -1$.

Because of bilinearity of the product, it is easy to check that $\mathbf{1} \cdot z = z \cdot \mathbf{1}$, $z_1 \cdot z_2 = z_2 \cdot z_1$ and $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$.

Quaternions

The **Hamilton quaternions** \mathbb{H} can be defined as a certain 4-dimensional algebra over the field \mathbb{R} . We have a distinguished basis $\mathbf{1}, i, j, k$. Hence every quaternion q is uniquely represented as $z = a\mathbf{1} + bi + cj + dk$, where $a, b, c, d \in \mathbb{R}$.

Since multiplication is a bilinear function, it is enough to define $q_1 \cdot q_2$ for $q_1, q_2 \in \{1, i, j, k\}$. We set $\mathbf{1} \cdot \mathbf{1} = \mathbf{1}$, $\mathbf{1} \cdot i = i \cdot \mathbf{1} = i$, $\mathbf{1} \cdot j = j \cdot \mathbf{1} = j$, $\mathbf{1} \cdot k = k \cdot \mathbf{1} = k$, $i \cdot i = j \cdot j = k \cdot k = -\mathbf{1}$, $i \cdot j = k$, $j \cdot i = -k$, $j \cdot k = i$, $k \cdot j = -i$, $k \cdot i = j$, $i \cdot k = -j$.

Theorem \mathbb{H} is a non-commutative division ring.

Lemma 1 $q \cdot \mathbf{1} = \mathbf{1} \cdot q = q$ for all $q \in \mathbb{H}$.

Proof. Since $f_1(q) = q \cdot \mathbf{1}$, $f_2(q) = \mathbf{1} \cdot q$ and $f_3(q) = q$ are all linear functions on \mathbb{H} , it is enough to prove the equalities in the case when $q \in \{\mathbf{1}, i, j, k\}$. In this case they follow from the definition of multiplication.

Lemma 2 For any $a, b \in \mathbb{R}$ and $q \in \mathbb{H}$ we have $(a\mathbf{1}) + (b\mathbf{1}) = (a+b)\mathbf{1}$, $(a\mathbf{1}) \cdot (b\mathbf{1}) = (ab)\mathbf{1}$ and $(a\mathbf{1}) \cdot q = aq$.

In view of Lemma 2, we can identify any quaternion of the form $a\mathbf{1}$ with the real number a so that $\mathbb{R} \subset \mathbb{H}$. This also allows to consider scalar multiplication on \mathbb{H} as a special case of multiplication of quaternions. In particular, we can use the same notation q_1q_2 for both kinds of multiplication.

Lemma 3 Multiplication of quaternions is associative.

Idea of the proof. Since $(q_1q_2)q_3$ and $q_1(q_2q_3)$ are both trilinear functions of $q_1, q_2, q_3 \in \mathbb{H}$, it is enough to prove the equality $(q_1q_2)q_3 = q_1(q_2q_3)$ in the case when $q_1, q_2, q_3 \in \{\mathbf{1}, i, j, k\}$.

For any quaternion q = a + bi + cj + dk, we define the **conjugate** quaternion by $\bar{q} = a - bi - cj - dk$ and the **modulus** of q by $|q| = \sqrt{a^2 + b^2 + c^2 + d^2}$.

Lemma 4 $q\bar{q} = \bar{q}q = |q|^2$ for all $q \in \mathbb{H}$.

Lemma 5 Every nonzero quaternion q has a multiplicative inverse: $q^{-1} = |q|^{-2}\bar{q}$.

Rational quaternions are quaternions of the form q = a + bi + cj + dk, where $a, b, c, d \in \mathbb{Q}$. The rational quaternions also form a division ring.

Integer quaternions are quaternions of the form q = a + bi + cj + dk, where $a, b, c, d \in \mathbb{Z}$. The integer quaternions form a ring. This ring has only 8 invertible elements (the units): $\pm 1, \pm i, \pm j, \pm k$. These 8 elements form a group under quaternion multiplication, called **the quaternion group** and denoted Q_8 .

Theorem Any non-abelian group of order 8 is isomorphic either to the dihedral group D_4 or to the quaternion group Q_8 .

From a ring to a field

Question 1. When a ring *R* can be extended to a field?

An obvious necessary condition is commutativity. Another necessary condition is absence of zero divisors (which is equivalent to cancellation laws).

Proposition If an element of a ring with unity has a multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a group?

Theorem Any finite semigroup with cancellation is a group.

Theorem If *S* is a commutative semigroup with cancellation, then it can be extended to an abelian group *G*. Moreover, if $G = \langle S \rangle$, then any element of *G* is of the form $b^{-1}a$, where $a, b \in S$. Moreover, if $G = \langle S \rangle$, then the group *G* is unique up to isomorphism.

Suppose S is a commutative semigroup with cancellation (with multiplicative notation). Consider the direct product $S \times S$. It is also a commutative semigroup with cancellation. For any $(a, b) \in S \times S$ we are going to use an alternative notation $\frac{a}{b}$. Then the operation on $S \times S$ is given by $\frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'}$. Let \sim be a relation on $S \times S$ such that $\frac{a_1}{b_1} \sim \frac{a_2}{b_2}$ if and only if $a_1b_2 = a_2b_1$.

Lemma 1 \sim is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. To prove transitivity, assume $\frac{a_1}{b_1} \sim \frac{a_2}{b_2}$ and $\frac{a_2}{b_2} \sim \frac{a_3}{b_3}$, that is, $a_1b_2 = a_2b_1$ and $a_2b_3 = a_3b_2$. Using commutativity in *S*, we obtain $a_1b_3b_2 = a_1b_2b_3 = a_2b_1b_3 = a_2b_3b_1 = a_3b_2b_1 = a_3b_1b_2$. After cancellation, $a_1b_3 = a_3b_1$, that is, $\frac{a_1}{b_1} \sim \frac{a_3}{b_3}$.

Lemma 2 The relation \sim is compatible with the operation on $S \times S$.

Consider the factor space $G = (S \times S)/\sim$ with the operation induced by the operation on $S \times S$. It is a commutative semigroup. For any $a, b \in S$ we denote the equivalence class of $\frac{a}{b}$ by $\left[\frac{a}{b}\right]$. **Lemma 3** $\left[\frac{ac}{bc}\right] = \left[\frac{a}{b}\right]$ for all $a, b, c \in S$. **Lemma 4** $\begin{bmatrix} c \\ c \end{bmatrix}$ is an identity element in G for any $c \in S$. **Lemma 5** $\left[\frac{b}{a}\right] = \left[\frac{a}{b}\right]^{-1}$ for all $a, b \in S$. **Lemma 6** G is an abelian group. **Lemma 7** Let $c \in S$. The map $f : S \to G$ defined by $f(a) = \left\lceil \frac{ac}{c} \right\rceil$ is an injective homomorphism. **Lemma 8** $\left\lceil \frac{a}{b} \right\rceil = (f(b))^{-1}f(a)$ for all $a, b \in S$.

Field of quotients

Theorem A ring R with unity can be extended to a field if and only if it is an integral domain.

If *R* is an integral domain, then there is a (smallest) field *F* containing *R* called the **quotient field** of *R* (or the **field of quotients**). Any element of *F* is of the form $b^{-1}a$, where $a, b \in R$. The field *F* is unique up to isomorphism.

Examples. • The quotient field of \mathbb{Z} is \mathbb{Q} .

- The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.
- The quotient field of $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} \mid m, n \in \mathbb{Z}\}$ is $\mathbb{Q}[\sqrt{2}] = \{p + q\sqrt{2} \mid p, q \in \mathbb{Q}\}.$