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Lecture 16:
Some examples of rings.
Field of quotients.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(AO0) for all x,y € R, x+y is an element of R;

(Al) (x+y)+z=x+(y+z) forall x,y,z€R;

(A2) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€R;

(A3) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(A4) x+y=y+x forall x,y €R;

(MO) for all x,y € R, xy is an element of R;

(M1) (xy)z = x(yz) forall x,y,z € R;

(D) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



Ring of functions

Let R be a ring and S be a nonempty set. Denote by
F(S,R) the set of all functions f:S — R. Given

f.g € F(S,R), welet (f+g)(x)=f(x)+ g(x) and
(fg)(x) = f(x)g(x) forall x € S. Thatis, to add (resp.
multiply) functions, we add (resp. multiply) their values at
every point. Then F(S,R) is a ring.

The ring F(S, R) inherits many properties from the ring R,
with one important exception. If R is a nontrivial ring and S
has more than one element, then the ring F(S, R) has
divisors of zero. Indeed, take any point xg € S, any nonzero
element r € R, and let

o if x=x, 0 if x=xo,
Alx) = {0 if xeS\{x}; hx) = {r if xe S\ {x}.
Then the functions f; and f, are nonzero elements of the ring
F(S,R) while fif, =0.



Ring of matrices

Let R be a ring. For any integers m, n > 0, denote by

M n(R) the set of all mxn matrices with entries from R.
Given two matrices A = (a;) and B = (b;) in My, .(R), we
let A+ B =(c;j) and A— B =(d;), where ¢; = a;; + b;
and dj =a; —bj, 1 <i<m, 1<j<n. Given matrices
A= (a;) € Mpua(R) and B = (b;) € M, ,(R), we let

AB = (C,'J'), where Cij = a,-1b1j + a,'2b2_,' +--- 4 a,-,,b,,j,
1<i<m 1<j<p

Matrix multiplication is associative. Indeed, let A = (aj)

c Mm,n(R), B = (bjk) c Mmp(R) and C = (Ckg) S Mp,q(R).
Then (AB)C = (di) and A(BC) = (d!,) are matrices in

M., 4(R). Using distributive laws in R, we obtain that

die = poy > (@b ke, dip =271 iy ai(bixcke).
Hence (AB)C = A(BC) since R is a ring.
As a consequence, square matrices in M, ,(R) form a ring.



Direct product of rings

Suppose Ry, R, ..., R, are rings. We define addition and
multiplication on the Cartesian product Ry x R, X --- X R, by

(ryryeeoytn)+ (i) =(n+r,n+r....m+r),
(r,ry e ta)(r, 0, rh) = (i, Ry, rar))
forall ri,rle R, 1<i<n.

Then Ry x R, X -+ x R, is a ring called the direct product
of rings Ry, Ry, ..., R,.

The ring Ry X Ry X -+ X R, is commutative if each of the
rings Ry, R, ..., R, is commutative. It is a ring with unity if
each of the rings Ry, R,,..., R, has the unity.

If at least two of the rings Ry, R», ..., R, are nontrivial, then
the direct product R; X Ry, X --- X R, admits divisors of zero.



Complex numbers

C: complex numbers.

Complex number: |z = x + iy,

where x,y € R and 2 = —1.
I = +/—1: imaginary unit
Alternative notation: z = x + yi.

x = real part of z,
Iy = imaginary part of z

y =0 = z = x (real number)
x =0 = z =iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that 2 = —1).

If 2z =x1 +iy1 and 2z = x» + iy», then
21+ 2= (x1+x)+i(y1+ ),
21— 2= (x1—x)+i()1 — y2),
212 = (x1x2 — y1y2) + i(x1y2 + xoy1).

Given z = x + iy, the complex conjugate of z is
Z=x—1Iy. The modulus of z is |z| = \/x% + y2.
2z = (x+iy)(x—iy) = x* = (iy)? = x* + y* = [2]*.

_1 z —ly

_ < 1_
z 27 (x+iy)~ x2—|—y




Complex exponentials

Definition. For any z € C let
2 n

z z
ec=14+z24+—4+--4+—=4...

2! n!
Remark. A sequence of complex numbers
z1=x1+ iy1, 2o = Xo + Iy»,... converges

to z=x-+1Iy if x,—x and y, =y as n — <.

Theorem 1 If z=x+ iy, x,y € R, then
e’ = e*(cosy + isiny).

In particular, e'® =cos¢ + ising, ¢ € R.

Theorem 2 e*™" = ¢e?.¢e" forall z,w € C.



Proposition €' = cos¢ +ising forall ¢ € R.

F 1)2 F\n
Proof- e’¢:1+i¢+(1§) +---+(If|) + -
The sequence 1,7,i%,i3,...,i", ... is periodic:
}7i7_1a_£7}7i7_1a_£7"'
It follows that
" 2 4 L ¢2k
i — 12 47 o4(—1
€ o1 T +(=1) 2K
. ¢3 ¢5 p ¢2k+1
S T S G Y, S N B
+'<¢ 31 "5l TV Gt

= COS ¢ + i sin ¢.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x,y) € R

A

y

X=rcos¢, y=rsing = z = r(cos¢+isin¢) = re
If z; = ne'® and z, = rRe'®, then
212y = rre91F%) 7 /7 = (r/r)el(®1792),



Complex numbers as an R-algebra

Complex numbers can be defined as a certain
2-dimensional algebra over the field R. We have
a distinguished basis 1,/. Hence every complex
number z is uniquely represented as z = x1 + yi,
where x,y € R.

Since multiplication is a bilinear function, it is
enough to define z - z, in the case 7,2 € {1,i}.
Weset 1-1=1,1-i=/-1=iand i-i=-1.
Because of bilinearity of the product, it is easy to
checkthat 1-z=2z-1, z1- 2 =2 -z and
(z1-2) - zz=21 (20 23).



Quaternions

The Hamilton quaternions H can be defined as a
certain 4-dimensional algebra over the field R. We
have a distinguished basis 1,/,/, k. Hence every
quaternion g is uniquely represented as
z=al+ bi + ¢j + dk, where a,b,c,d € R.

Since multiplication is a bilinear function, it is
enough to define q; - g for q1,q2 € {1,/,/, k}.
Weset 1-1=1,1-i=/-1=/,1-j=5-1=,
l-k=k-1=k, i-i=j-j=k-k=-1, [-j=k,
joi=—k, j-k=1i k-j=—i, k-i=j, i-k=—].

Theorem H is a non-commutative division ring.



Lemmal g-1=1.qg=gq forall g € H.

Proof. Since fi(q) =q-1, fr(q) =1-q and f3(q) = q are
all linear functions on Hi, it is enough to prove the equalities in
the case when g € {1,/,/, k}. In this case they follow from
the definition of multiplication.

Lemma 2 Forany a,b € R and g € H we have
(al) + (b1) = (a+ b)1, (al) - (b1) = (ab)1 and
(al) - g = agq.

In view of Lemma 2, we can identify any quaternion of the
form al with the real number a so that R C H. This also
allows to consider scalar multiplication on H as a special case
of multiplication of quaternions. In particular, we can use the
same notation g;qg, for both kinds of multiplication.



Lemma 3 Multiplication of quaternions is associative.

Idea of the proof. Since (¢192)gs and ¢q1(gq3) are both
trilinear functions of @i, g2, g3 € H, it is enough to prove the
equality (g192)gs = g1(g293) in the case when

d1,G2,93 € {17 i?.ja k}

For any quaternion q = a+ bi + ¢j + dk, we define the
conjugate quaternion by § = a — bi — ¢j — dk and the
modulus of g by |q| = Va2 + b2 + 2 + d2.

Lemma 4 qg = Gq = |q|? for all g € H.

Lemma 5 Every nonzero quaternion g has a multiplicative
inverse: ¢! = |q|727.



Rational quaternions are quaternions of the form
qg=a+ bi+ ¢j + dk, where a,b,c,d € Q. The
rational quaternions also form a division ring.

Integer quaternions are quaternions of the form
qg=a+ bi + ¢j + dk, where a,b,c,d € Z. The
integer quaternions form a ring. This ring has only
8 invertible elements (the units): +1, £/, +j, £k.
These 8 elements form a group under quaternion
multiplication, called the quaternion group and
denoted Q.

Theorem Any non-abelian group of order 8 is
isomorphic either to the dihedral group D, or to
the quaternion group Qs.



From a ring to a field
Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem Any finite semigroup with cancellation is a group.

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G. Moreover, if

G = (S), then any element of G is of the form b~'a, where

a,beS. Moreover, if G =(S), then the group G is unique

up to isomorphism.



Suppose S is a commutative semigroup with cancellation (with
multiplicative notation). Consider the direct product S x S.
It is also a commutative semigroup with cancellation. For any

. . . a
(a,b) € S x S we are going to use an alternative notation —.
/ /

a a aa
Then th ti b b
en the operation on S x S is given by 5 b/ bh'
Let ~ be a relation on S x S such that
Z—i ~ Z—z if and only if a;b, = axb;.

Lemma 1 ~ is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. To prove

L s a » . B
transitivity, assume 3 ~ £ and ™ thatis, a;b, = a>b;

and aybs = azb,. Using commutativity in S, we obtain
31b3b2 = 31b2b3 = 32b1b3 = 32b3b1 = a3b2b1 = a3b1b2.
a1 as

After cancellation, a;bs; = asby, that is, el

Lemma 2 The relation ~ is compatible with the operation
onSxS.



Consider the factor space G = (S x S§)/~ with the operation
induced by the operation on § x S. It is a commutative
semigroup. For any a, b € S we denote the equivalence class

of % by [a
Lemma 3 %} = [%} for all a,b,c € S.

Lemma 4 _E] is an identity element in G for any c € S.
Lc

Lemma 5 g} - E]_l for all a,be S.

Lemma 6 G is an abelian group.

Lemma 7 Let c€S. Themap f:S — G defined by
acy . N :
f(a) = [?} is an injective homomorphism.

Lemma 8 [a — (f(b))"2f(a) for all a,be S.



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)
field F containing R called the quotient field of R
(or the field of quotients). Any element of F is
of the form b~'a, where a,b € R. The field F is
unique up to isomorphism.

Examples. e The quotient field of Z is Q.

e The quotient field of R[X] is R(X).

e The quotient field of Z[v/2] = {m + n/2 |
m,neZ} is Q[V2] ={p+qv2|p,qcQ}



