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Lecture 16:
Some examples of rings.

Field of quotients.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Ring of functions

Let R be a ring and S be a nonempty set. Denote by
F(S ,R) the set of all functions f : S → R . Given
f , g ∈ F(S ,R), we let (f + g)(x) = f (x) + g(x) and
(fg)(x) = f (x)g(x) for all x ∈ S . That is, to add (resp.
multiply) functions, we add (resp. multiply) their values at
every point. Then F(S ,R) is a ring.

The ring F(S ,R) inherits many properties from the ring R ,
with one important exception. If R is a nontrivial ring and S

has more than one element, then the ring F(S ,R) has
divisors of zero. Indeed, take any point x0 ∈ S , any nonzero
element r ∈ R , and let

f1(x) =

{
r if x = x0,
0 if x ∈ S \ {x0}; f2(x) =

{
0 if x = x0,
r if x ∈ S \ {x0}.

Then the functions f1 and f2 are nonzero elements of the ring
F(S ,R) while f1f2 = 0.



Ring of matrices

Let R be a ring. For any integers m, n > 0, denote by
Mm,n(R) the set of all m×n matrices with entries from R .
Given two matrices A = (aij) and B = (bij) in Mm,n(R), we
let A+ B = (cij) and A− B = (dij), where cij = aij + bij
and dij = aij − bij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given matrices
A = (aij) ∈ Mm,n(R) and B = (bij) ∈ Mn,p(R), we let
AB = (cij), where cij = ai1b1j + ai2b2j + · · ·+ ainbnj ,
1 ≤ i ≤ m, 1 ≤ j ≤ p.

Matrix multiplication is associative. Indeed, let A = (aij)
∈ Mm,n(R), B = (bjk) ∈ Mn,p(R) and C = (ckℓ) ∈ Mp,q(R).
Then (AB)C = (diℓ) and A(BC ) = (d ′

iℓ) are matrices in
Mn,q(R). Using distributive laws in R , we obtain that

diℓ =
∑p

k=1

∑n

j=1
(aijbjk)ckℓ, d ′

iℓ =
∑n

j=1

∑p

k=1
aij(bjkckℓ).

Hence (AB)C = A(BC ) since R is a ring.

As a consequence, square matrices in Mn,n(R) form a ring.



Direct product of rings

Suppose R1,R2, . . . ,Rn are rings. We define addition and
multiplication on the Cartesian product R1 × R2 × · · · × Rn by

(r1, r2, . . . , rn) + (r ′
1
, r ′

2
, . . . , r ′n) = (r1 + r ′

1
, r2 + r ′

2
, . . . , rn + r ′n),

(r1, r2, . . . , rn)(r
′

1
, r ′

2
, . . . , r ′n) = (r1r

′

1
, r2r

′

2
, . . . , rnr

′

n)

for all ri , r
′

i ∈ Ri , 1 ≤ i ≤ n.

Then R1 × R2 × · · · × Rn is a ring called the direct product
of rings R1,R2, . . . ,Rn.

The ring R1 × R2 × · · · × Rn is commutative if each of the
rings R1,R2, . . . ,Rn is commutative. It is a ring with unity if
each of the rings R1,R2, . . . ,Rn has the unity.

If at least two of the rings R1,R2, . . . ,Rn are nontrivial, then
the direct product R1 × R2 × · · · × Rn admits divisors of zero.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i 2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as

polynomials in i (but keep in mind that i 2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is

z̄ = x − iy . The modulus of z is |z | =
√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2− (iy)2 = x2+ y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges

to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cosφ+ i sinφ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z ,w ∈ C.



Proposition e iφ = cosφ+ i sinφ for all φ ∈ R.

Proof: e iφ = 1 + iφ+
(iφ)2

2!
+ · · ·+ (iφ)n

n!
+ · · ·

The sequence 1, i , i 2, i 3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1− φ2

2!
+

φ4

4!
− · · ·+ (−1)k

φ2k

(2k)!
+ · · ·

+ i

(

φ− φ3

3!
+

φ5

5!
− · · ·+ (−1)k

φ2k+1

(2k + 1)!
+ · · ·

)

= cosφ+ i sinφ.



Geometric representation

Any complex number z = x + iy is represented by

the vector/point (x , y) ∈ R2.

y

x0

r

φ
0

x = r cosφ, y = r sinφ =⇒ z = r(cosφ+ i sinφ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then
z1z2 = r1r2e

i(φ1+φ2), z1/z2 = (r1/r2)e
i(φ1−φ2).



Complex numbers as an R-algebra

Complex numbers can be defined as a certain

2-dimensional algebra over the field R. We have
a distinguished basis 1, i . Hence every complex

number z is uniquely represented as z = x1+ yi ,
where x , y ∈ R.

Since multiplication is a bilinear function, it is

enough to define z1 · z2 in the case z1, z2 ∈ {1, i}.
We set 1 · 1 = 1, 1 · i = i · 1 = i and i · i = −1.

Because of bilinearity of the product, it is easy to
check that 1 · z = z · 1, z1 · z2 = z2 · z1 and
(z1 · z2) · z3 = z1 · (z2 · z3).



Quaternions

The Hamilton quaternions H can be defined as a

certain 4-dimensional algebra over the field R. We
have a distinguished basis 1, i , j , k . Hence every
quaternion q is uniquely represented as

z = a1+ bi + cj + dk , where a, b, c , d ∈ R.

Since multiplication is a bilinear function, it is

enough to define q1 · q2 for q1, q2 ∈ {1, i , j , k}.
We set 1 · 1 = 1, 1 · i = i · 1 = i , 1 · j = j · 1 = j ,
1 · k = k · 1 = k , i · i = j · j = k · k = −1, i · j = k ,

j · i = −k , j · k = i , k · j = −i , k · i = j , i · k = −j .

Theorem H is a non-commutative division ring.



Lemma 1 q · 1 = 1 · q = q for all q ∈ H.

Proof. Since f1(q) = q · 1, f2(q) = 1 · q and f3(q) = q are
all linear functions on H, it is enough to prove the equalities in
the case when q ∈ {1, i , j , k}. In this case they follow from
the definition of multiplication.

Lemma 2 For any a, b ∈ R and q ∈ H we have
(a1) + (b1) = (a + b)1, (a1) · (b1) = (ab)1 and
(a1) · q = aq.

In view of Lemma 2, we can identify any quaternion of the
form a1 with the real number a so that R ⊂ H. This also
allows to consider scalar multiplication on H as a special case
of multiplication of quaternions. In particular, we can use the
same notation q1q2 for both kinds of multiplication.



Lemma 3 Multiplication of quaternions is associative.

Idea of the proof. Since (q1q2)q3 and q1(q2q3) are both
trilinear functions of q1, q2, q3 ∈ H, it is enough to prove the
equality (q1q2)q3 = q1(q2q3) in the case when
q1, q2, q3 ∈ {1, i , j , k}.

For any quaternion q = a + bi + cj + dk, we define the
conjugate quaternion by q̄ = a − bi − cj − dk and the
modulus of q by |q| =

√
a2 + b2 + c2 + d2.

Lemma 4 qq̄ = q̄q = |q|2 for all q ∈ H.

Lemma 5 Every nonzero quaternion q has a multiplicative
inverse: q−1 = |q|−2q̄.



Rational quaternions are quaternions of the form
q = a + bi + cj + dk , where a, b, c , d ∈ Q. The

rational quaternions also form a division ring.

Integer quaternions are quaternions of the form
q = a + bi + cj + dk , where a, b, c , d ∈ Z. The

integer quaternions form a ring. This ring has only
8 invertible elements (the units): ±1,±i ,±j ,±k .

These 8 elements form a group under quaternion
multiplication, called the quaternion group and

denoted Q8.

Theorem Any non-abelian group of order 8 is
isomorphic either to the dihedral group D4 or to

the quaternion group Q8.



From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem Any finite semigroup with cancellation is a group.

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G . Moreover, if
G = 〈S〉, then any element of G is of the form b−1a, where
a, b ∈ S . Moreover, if G = 〈S〉, then the group G is unique
up to isomorphism.



Suppose S is a commutative semigroup with cancellation (with
multiplicative notation). Consider the direct product S × S .
It is also a commutative semigroup with cancellation. For any

(a, b) ∈ S × S we are going to use an alternative notation
a

b
.

Then the operation on S × S is given by
a

b
· a

′

b′
=

aa′

bb′
.

Let ∼ be a relation on S × S such that
a1

b1
∼ a2

b2
if and only if a1b2 = a2b1.

Lemma 1 ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. To prove
transitivity, assume a1

b1
∼ a2

b2
and a2

b2
∼ a3

b3
, that is, a1b2 = a2b1

and a2b3 = a3b2. Using commutativity in S , we obtain
a1b3b2 = a1b2b3 = a2b1b3 = a2b3b1 = a3b2b1 = a3b1b2.
After cancellation, a1b3 = a3b1, that is, a1

b1
∼ a3

b3
.

Lemma 2 The relation ∼ is compatible with the operation
on S × S .



Consider the factor space G = (S × S)/∼ with the operation
induced by the operation on S × S . It is a commutative
semigroup. For any a, b ∈ S we denote the equivalence class

of
a

b
by

[a

b

]

.

Lemma 3
[ac

bc

]

=
[a

b

]

for all a, b, c ∈ S .

Lemma 4
[c

c

]

is an identity element in G for any c ∈ S .

Lemma 5
[b

a

]

=
[a

b

]
−1

for all a, b ∈ S .

Lemma 6 G is an abelian group.

Lemma 7 Let c ∈ S . The map f : S → G defined by

f (a) =
[ac

c

]

is an injective homomorphism.

Lemma 8
[a

b

]

= (f (b))−1f (a) for all a, b ∈ S .



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)

field F containing R called the quotient field of R
(or the field of quotients). Any element of F is

of the form b−1a, where a, b ∈ R. The field F is
unique up to isomorphism.

Examples. • The quotient field of Z is Q.

• The quotient field of R[X ] is R(X ).
• The quotient field of Z[

√
2] = {m + n

√
2 |

m, n ∈ Z} is Q[
√
2] = {p + q

√
2 | p, q ∈ Q}.


