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Modern Algebra I

Lecture 25:

Euclidean algorithm.
Chinese remainder theorem.



Euclidean rings

Let R be an integral domain. A function
E : R \ {0} → Z+ is called a Euclidean function
on R if for any x , y ∈ R \ {0} we have x = qy + r

for some q, r ∈ R such that r=0 or E (r)<E (y).

The ring R is called a Euclidean ring (or
Euclidean domain) if it admits a Euclidean

function. In a Euclidean ring, division with
remainder is well defined (not necessarily uniquely).

Theorem If R is a Euclidean ring then the greatest

common divisor gcd(a1, a2, . . . , ak) exists for any
nonzero elements a1, a2, . . . , ak ∈ R.



Euclidean algorithm

Lemma 1 If b divides a then gcd(a, b) = b.

Lemma 2 Suppose R is a Euclidean ring. If b
does not divide a and r is the remainder of a when

divided by b, then gcd(a, b) = gcd(b, r).

Idea of the proof: Since a = bq + r for some q ∈ R , the
pairs a, b and b, r have the same common divisors.

Theorem Suppose R is a Euclidean ring. Given
two nonzero elements a, b ∈ R, there is a sequence

r1, r2, . . . , rk such that r1 = a, r2 = b, ri is the
remainder of ri−2 when divided by ri−1 for 3≤ i≤k ,

and rk divides rk−1. Then gcd(a, b) = rk .



Example. R = Z, a = 1356, b = 744.

gcd(a, b) = ?

We obtain

1356 = 744 · 1 + 612,

744 = 612 · 1 + 132,
612 = 132 · 4 + 84,
132 = 84 · 1 + 48,

84 = 48 · 1 + 36,
48 = 36 · 1 + 12,

36 = 12 · 3.
Thus gcd(1356, 744) = 12.



Problem. Find an integer solution of the equation

1356m + 744n = 12.

Let us use calculations done for the Euclidean algorithm
applied to 1356 and 744.

1356 = 744 · 1 + 612
=⇒ 612 = 1 · 1356− 1 · 744
744 = 612 · 1 + 132
=⇒ 132 = 744− 612 = −1 · 1356 + 2 · 744
612 = 132 · 4 + 84
=⇒ 84 = 612− 4 · 132 = 5 · 1356− 9 · 744
132 = 84 · 1 + 48
=⇒ 48 = 132− 84 = −6 · 1356 + 11 · 744
84 = 48 · 1 + 36
=⇒ 36 = 84− 48 = 11 · 1356− 20 · 744
48 = 36 · 1 + 12
=⇒ 12 = 48− 36 = −17 · 1356 + 31 · 744
Thus m = −17, n = 31 is a solution.



Alternative solution. Consider a matrix

(

1 0 1356
0 1 744

)

,

which is the augmented matrix of a system

{

x = 1356,
y = 744.

We are going to apply elementary row operations to this
matrix until we get 12 in the rightmost column.
(

1 0 1356
0 1 744

)

→
(

1 −1 612
0 1 744

)

→
(

1 −1 612
−1 2 132

)

→
(

5 −9 84
−1 2 132

)

→
(

5 −9 84
−6 11 48

)

→
(

11 −20 36
−6 11 48

)

→
(

11 −20 36
−17 31 12

)

→
(

62 −113 0
−17 31 12

)

Hence the above system is equivalent to
{

62x − 113y = 0,
−17x + 31y = 12.

Thus m = −17, n = 31 is a solution to 1356m + 744n = 12.



Problem. Find all common roots of real polynomials
p(x) = x4 + 2x3 − x2 − 2x + 1 and q(x) = x4 + x3 + x − 1.

Common roots of p and q are exactly roots of their greatest
common divisor gcd(p, q). We can find gcd(p, q) using the
Euclidean algorithm.

First we divide p by q: x4 + 2x3 − x2 − 2x + 1 =
= (x4 + x3 + x − 1)(1) + x3 − x2 − 3x + 2.

Next we divide q by the remainder r1(x) = x3 − x2 − 3x + 2:
x4 + x3 + x − 1 = (x3 − x2 − 3x + 2)(x + 2) + 5x2 + 5x − 5.

Next we divide r1 by the remainder r2(x) = 5x2 + 5x − 5:
x3 − x2 − 3x + 2 = (5x2 + 5x − 5)(1

5
x − 2

5
).

Since r2 divides r1, it follows that

gcd(p, q) = gcd(q, r1) = gcd(r1, r2) = r2.

The polynomial r2(x) = 5x2 + 5x − 5 has roots
(−1 −

√
5)/2 and (−1 +

√
5)/2.



Chinese Remainder Theorem

Theorem Let n,m ≥ 2 be relatively prime
integers and a, b be any integers. Then the system

{

x ≡ amod n,
x ≡ bmodm

of congruences has a solution. Moreover, this
solution is unique modulo nm.

Proof: Since gcd(n,m) = 1, we have sn + tm = 1 for some
integers s, t. Let c = bsn + atm. Then

c = bsn + a(1− sn) = a + (b − a)sn ≡ a (mod n),
c = b(1− tm) + atm = b + (a − b)tm ≡ b (modm).

Therefore c is a solution. Also, any element of [c]nm is a
solution. Conversely, if x is a solution, then n|(x − c) and
m|(x − c), which implies that nm|(x − c), i.e., x ∈ [c]nm.



Problem. Solve simultaneous congruences

{

x ≡ 3mod 12,
x ≡ 2mod 29.

The moduli 12 and 29 are coprime. First we use the
Euclidean algorithm (in matrix form) to represent 1 as an
integral linear combination of 12 and 29:
(

1 0 12
0 1 29

)

→
(

1 0 12
−2 1 5

)

→
(

5 −2 2
−2 1 5

)

→
(

5 −2 2
−12 5 1

)

→
(

29 −12 0
−12 5 1

)

.

From the 2nd row of the last matrix, (−12) · 12 + 5 · 29 = 1.
Let x1 = 5 · 29 = 145, x2 = (−12) · 12 = −144. Then

{

x1 ≡ 1mod 12,
x1 ≡ 0mod 29.

{

x2 ≡ 0mod 12,
x2 ≡ 1mod 29.

It follows that one solution is x = 3x1 + 2x2 = 147. The
other solutions form the congruence class of 147 modulo
12 · 29 = 348.



Problem. Solve a system of congruences

{

x ≡ 3mod 12,
x ≡ 2mod 10.

The system has no solutions. Indeed, any solution of the first
congruence must be an odd number while any solution of the
second congruence must be an even number.

Problem. Solve a system of congruences

{

x ≡ 6mod 12,
x ≡ 2mod 10.

The general solution of the first congruence is x = 6 + 12y ,
where y is an arbitrary integer. Substituting this into the
second congruence, we obtain 6 + 12y ≡ 2mod 10 ⇐⇒
12y ≡ −4mod 10 ⇐⇒ 6y ≡ −2mod 5 ⇐⇒ y ≡ 3mod 5.
Thus y = 3 + 5k, where k is an arbitrary integer. Then
x = 6 + 12y = 6 + 12(3 + 5k) = 42 + 60k or, equivalently,
x ≡ 42mod 60.

Note that the solution is unique modulo 60, which is the least
common multiple of 12 and 10.



Problem. Solve a system of congruences
{

2x ≡ 3mod 15,
x ≡ 2mod 31.

We begin with solving the first linear congruence. Since
gcd(2, 15) = 1, all solutions form a single congruence class
modulo 15. Namely, x is a solution if [x ]15 = [2]−1

15
[3]15. We

find that [2]−1

15
= [8]15. Hence [x ]15= [8]15[3]15= [24]15= [9]15.

Equivalently, x ≡ 9mod 15.

Now the original system is reduced to
{

x ≡ 9mod 15,
x ≡ 2mod 31.

Next we represent 1 as an integral linear combination of 15
and 31: 1 = (−2) · 15 + 31. It follows that one solution to
the system is x = 2 · (−2) · 15 + 9 · 31 = 219. All solutions
form the congruence class of 219 modulo 15 · 31 = 465.



Chinese Remainder Theorem (revisited)
For any integer n ≥ 2 we have a homomorphism of rings
hn : Z → Zn = Z/nZ given by h(x) = [x ]n for all x ∈ Z.
The kernel of hn is Ker(hn) = nZ.

Now for every pair of integers m, n ≥ 2 we can define a
homomorphism hm,n : Z → Zm × Zn by
hm,n(x) = (hm(x), hn(x)) = ([x ]m, [x ]n) for all x ∈ Z. The
kernel of hm,n is Ker(hm,n) = Ker(hm) ∩Ker(hn) = mZ ∩ nZ

= kZ, where k = lcm(m, n).

Now assume that m and n are coprime, gcd(m, n) = 1. Then
lcm(m, n) = mn. By the Fundamental Theorem on
Homomorphisms, the ring Z/Ker(hm,n) = Z/(mn)Z = Zmn is
isomorphic to the image hn,m(Z). Observe that the rings Zmn

and Zm × Zn have the same number of elements. Therefore
hn,m(Z) = Zm × Zn. In particular, Zmn

∼= Zm × Zn as rings.

The latter fact is essentially a reformulation of the Chinese
Remainder Theorem in more sophisticated terms.



Chinese Remainder Theorem (generalized)

Theorem Let n1, n2, . . . , nk ≥ 2 be pairwise
coprime integers and a1, a2, . . . , ak be any integers.

Then the system of congruences














x ≡ a1mod n1,
x ≡ a2mod n2,

. . . . . . . . .
x ≡ ak mod nk

has a solution which is unique modulo n1n2 . . . nk .

Idea of the proof: The theorem is proved by induction on k.
The base case k = 1 is trivial. The induction step uses the
usual Chinese Remainder Theorem.



Problem. Solve simultaneous congruences






x ≡ 1mod 3,

x ≡ 2mod 4,
x ≡ 3mod 5.

First we solve the first two congruences. Let x1 = 4, x2 = −3.
Then x1 ≡ 1mod 3, x1 ≡ 0mod 4 and x2 ≡ 0mod 3,
x2 ≡ 1mod 4. It follows that x1 + 2x2 = −2 is a solution.
The general solution is x ≡ −2mod 12.

Now it remains to solve the system
{

x ≡ −2mod 12,
x ≡ 3mod 5.

We need to represent 1 as an integral linear combination of 12
and 5: 1 = (−2) · 12 + 5 · 5. Then a particular solution is
x = 3 · (−2) · 12 + (−2) · 5 · 5 = −122. The general solution
is x ≡ −122mod 60, which is the same as x ≡ −2mod 60.


