MATH 423
Linear Algebra Il

Lecture 13:
Advanced constructions of vector spaces.



Cartesian product

Given two sets V; and V), the Cartesian product
Vi x V, is the set of all pairs (x,y), where x € V;
and y € V5.

If both V; and V, are vector spaces (over the same
field F) then Vi x V5, is naturally endowed with the
structure of a vector space. Namely, the linear
operations are given by

(x1,y1) + (x2,¥2) = (X1 + X2, y1 + ¥2),
r(x,y) = (rx, ry)
for all x1,x,x € V4, y1,¥2,y € V5, and r € F.

Note that the zero vector in Vi x V5 is (01,0,), where 0y
and 0, are the zero vectors in Vi and V5, respectively.



Theorem dim(V; x V,) =dim Vi + dim V5.
The theorem follows from the next lemma.

Lemma Suppose S; is a basis for Vi and S, is a basis for V.
Then the union of sets S; x {0} and {0:} x S, is a basis
for Vl X V2.

Idea of the proof: (x,y) = (x,02) + (04,y) for all x € V;,
y e V,. Also, if xi,...,Xn € 51, Y1,...,¥n € Sz, then

r(x1,02) + - + rm(Xm, 02) + 51(01,y1) + - - - + 50(01, yn)
= (nx1+ -+ rmXm, S1Y1 + - - ., Sp¥n).

Similarly, for any vector spaces Vi, V5, ..., Vi we
can define a vector space Vi x V), x -+ X V.
The dimension of this space is % , dim V.
Example. R"=R xR x--- xR,

n times




Direct sum

Let V be a vector space. For any subsets Xi, Xs,..., X, of
V' we define another subset

Theorem The set X; + X, + -+ + X, is a subspace of V
provided that each X; is a subspace of V.

Suppose V = Vi + Vo + .-+ V, for some subspaces
Vi,...,V,. We say that V is the direct sum of the
subspaces V; and write ‘ V=VieV,®d---aV,| if any
vector x € V is uniquely expanded as x; + --- + x,,, where
x; € V..

Example. Vi x Vo = (V4 x {02}) ® ({01} x V2) for any
vector spaces V; and V5. The expansion is

(x,¥) = (x,02) + (04, y).




Suppose Vi, V,, ..., V, are subspaces of a vector
space V. Consider a mapping
f:Vix---xV,— V given by

f(X1,X0, ..., Xp) = X1+ Xo+ -+ + X,

Theorem 1 (i) The mapping f is linear.

(i) V=Vi+ Vo+---+V, if and only if f is onto.
([ V=VvVioV,d ---@V, if and only if f is an
isomorphism.

Corollary dim(Vi o Vo - @ V,) =", dimV,.

Theorem 2 Suppose V; and V, are subspaces of
V. Then the sum Vi + V), is direct if and only if
VinV, ={0}.



Linear operations on sets

Let V be a vector space. Given two nonempty subsets X and
Y of V, we define another subset, denoted X + Y, by
X+Y={x+y|xeX, yeVY}

Given a nonempty subset X C V and a scalar r € F, we
define another subset, denoted rX, by rX = {rx | x € X}.

The set of all nonempty subsets of V' is not a vector space
with respect to these operations unless V = {0}.

Indeed, we have X + {0} = X and X + V =V for any
nonempty subset X C V. The first relation implies that only
{0} could be the zero vector. Then the second relation
implies that the set V' has no additive inverse so that the
axiom V54 fails.



Quotient space
Let Vo be a subspace of a vector space V. A coset of Vj in
V is any set of the form {x} + V, (also denoted x + V).
The set of all cosets of V; is denoted V//V, and called the
quotient of V by V.

Theorem 1 V/V; is a vector space.
The theorem follows from the next lemma.

Lemma (x+ Vo) +(y+ W) =(x+y)+ Vo and
r(x+ Vo) = rx+ V4, for any vectors x,y € V' and scalar r.

Theorem 2 dim(V/Vp) =dim V —dim V.

Proof: Consider a mapping ¢ : V — V/V, given by

o(x) =x+ V for all x € V. By the above lemma, ¢ is
linear. Clearly, ¢ is onto so that the range of ¢ is V/V,.
The zero vector of the vector space V/Vy is 0+ Vo = V.
It follows that the null-space of ¢ is V. By the dimension
theorem, dim(V/V;) + dim Vy = dim V.



Given vector spaces V; and V5, let B(Vy, V,) denote the
subspace of F (V4 x V,,F) consisting of bilinear functions
(i.e., functions of two variables x € V4 and y € V; that
depend linearly on each variable).

Theorem If dim V; = m and dim V, = n, then B(V4, V,) is
isomorphic to M, ,(FF).

Proof: Let a = [vy,...,v,]| be an ordered basis for V; and
B = [wi,...,w,| be an ordered basis for V,. For any matrix
C € M, n(F) we define a function fc: Vi x Vo — R by
fe(x,y) = ([x]o)!Cly]s forall x € V; and y € V,.

It is easy to observe that f¢ is bilinear. Moreover, the
expression fc(x,y) depends linearly on C as well. This implies
that a transformation L : M, ,(F) — B(V4, V,) given by
L(C) = fc is linear. The transformation L is one-to-one since
the matrix C can be recovered from the function f-. Namely,
if C=(c;), then ¢; = fc(vi,w;), 1<i<m, 1<j<n.



It remains to show that L is onto. Take any function

f € B(V4, V,) and vectors x € V;, y € V. We have
X=nvi+-+rpwV, and y = sswy + - -- + s,w, for some
scalars r;,s;. Using bilinearity of f, we obtain

f(X,y) = f(rlvl + -+ rme7Y) = Zri f(V,’,y)
i=1

= Z rif(vi,s1Wy + -+ + spw,) = ZZ risj f(vi, w;)
i=1 i=1 j=1
f(vi,wy)  f(vi,wy) ... f(vy,w,)
f(va,wy)  f(vo,wa) ... f(va,w,)
:(r17r2"'7rm) : . .
f(vm,Wi) F(Vpm,wWa) .. (v, W)

= ([xla)" Clyls
for some matrix C € M, ,(F). Then f = fc.



