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Linear Algebra II

Lecture 13:
Advanced constructions of vector spaces.



Cartesian product

Given two sets V1 and V2, the Cartesian product

V1 × V2 is the set of all pairs (x, y), where x ∈ V1

and y ∈ V2.

If both V1 and V2 are vector spaces (over the same
field F) then V1 × V2 is naturally endowed with the
structure of a vector space. Namely, the linear
operations are given by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
r(x, y) = (rx, ry)

for all x1, x2, x ∈ V1, y1, y2, y ∈ V2, and r ∈ F.

Note that the zero vector in V1 × V2 is (01, 02), where 01

and 02 are the zero vectors in V1 and V2, respectively.



Theorem dim(V1 × V2) = dim V1 + dim V2.

The theorem follows from the next lemma.

Lemma Suppose S1 is a basis for V1 and S2 is a basis for V2.
Then the union of sets S1 × {02} and {01} × S2 is a basis
for V1 × V2.

Idea of the proof: (x, y) = (x, 02) + (01, y) for all x ∈ V1,
y ∈ V2. Also, if x1, . . . , xm ∈ S1, y1, . . . , yn ∈ S2, then

r1(x1, 02) + · · · + rm(xm, 02) + s1(01, y1) + · · · + sn(01, yn)
= (r1x1 + · · · + rmxm, s1y1 + . . . , snyn).

Similarly, for any vector spaces V1, V2, . . . , Vk we
can define a vector space V1 × V2 × · · · × Vk .
The dimension of this space is

∑
k

i=1
dim Vi .

Example. R
n = R × R × · · · × R

︸ ︷︷ ︸

n times

.



Direct sum

Let V be a vector space. For any subsets X1, X2, . . . , Xn of
V we define another subset

X1 + X2 + · · · + Xn = {x1 + x2 + · · · + xn | xi ∈ Xi , 1 ≤ i ≤ n}.

Theorem The set X1 + X2 + · · · + Xn is a subspace of V

provided that each Xi is a subspace of V .

Suppose V = V1 + V2 + · · · + Vn for some subspaces
V1, . . . , Vn. We say that V is the direct sum of the

subspaces Vi and write V = V1 ⊕ V2 ⊕ · · · ⊕ Vn if any
vector x ∈ V is uniquely expanded as x1 + · · · + xn, where
xi ∈ Vi .

Example. V1 × V2 = (V1 × {02}) ⊕ ({01} × V2) for any
vector spaces V1 and V2. The expansion is

(x, y) = (x, 02) + (01, y).



Suppose V1, V2, . . . , Vn are subspaces of a vector
space V . Consider a mapping
f : V1 × · · · × Vn → V given by

f (x1, x2, . . . , xn) = x1 + x2 + · · · + xn.

Theorem 1 (i) The mapping f is linear.
(ii) V = V1 + V2 + · · ·+ Vn if and only if f is onto.
(iii) V = V1 ⊕ V2 ⊕ · · · ⊕ Vn if and only if f is an
isomorphism.

Corollary dim(V1 ⊕ V2 ⊕ · · · ⊕ Vn) =
∑

n

i=1
dim Vi .

Theorem 2 Suppose V1 and V2 are subspaces of
V . Then the sum V1 + V2 is direct if and only if
V1 ∩ V2 = {0}.



Linear operations on sets

Let V be a vector space. Given two nonempty subsets X and
Y of V , we define another subset, denoted X + Y , by
X + Y = {x + y | x ∈ X , y ∈ Y }.

Given a nonempty subset X ⊂ V and a scalar r ∈ F, we
define another subset, denoted rX , by rX = {rx | x ∈ X}.

The set of all nonempty subsets of V is not a vector space
with respect to these operations unless V = {0}.

Indeed, we have X + {0} = X and X + V = V for any
nonempty subset X ⊂ V . The first relation implies that only
{0} could be the zero vector. Then the second relation
implies that the set V has no additive inverse so that the
axiom VS4 fails.



Quotient space
Let V0 be a subspace of a vector space V . A coset of V0 in
V is any set of the form {x} + V0 (also denoted x + V0).
The set of all cosets of V0 is denoted V /V0 and called the
quotient of V by V0.

Theorem 1 V /V0 is a vector space.

The theorem follows from the next lemma.

Lemma (x + V0) + (y + V0) = (x + y) + V0 and
r(x + V0) = rx + V0 for any vectors x, y ∈ V and scalar r .

Theorem 2 dim(V /V0) = dim V − dim V0.

Proof: Consider a mapping φ : V → V /V0 given by
φ(x) = x + V0 for all x ∈ V . By the above lemma, φ is
linear. Clearly, φ is onto so that the range of φ is V /V0.
The zero vector of the vector space V /V0 is 0 + V0 = V0.
It follows that the null-space of φ is V0. By the dimension
theorem, dim(V /V0) + dim V0 = dim V .



Given vector spaces V1 and V2, let B(V1, V2) denote the
subspace of F(V1 × V2, F) consisting of bilinear functions
(i.e., functions of two variables x ∈ V1 and y ∈ V2 that
depend linearly on each variable).

Theorem If dim V1 = m and dim V2 = n, then B(V1, V2) is
isomorphic to Mm,n(F).

Proof: Let α = [v1, . . . , vm] be an ordered basis for V1 and
β = [w1, . . . ,wn] be an ordered basis for V2. For any matrix
C ∈ Mm,n(F) we define a function fC : V1 × V2 → R by
fC (x, y) = ([x]α)tC [y]β for all x ∈ V1 and y ∈ V2.

It is easy to observe that fC is bilinear. Moreover, the
expression fC (x, y) depends linearly on C as well. This implies
that a transformation L : Mm,n(F) → B(V1, V2) given by
L(C ) = fC is linear. The transformation L is one-to-one since
the matrix C can be recovered from the function fC . Namely,
if C = (cij), then cij = fC (vi ,wj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.



It remains to show that L is onto. Take any function
f ∈ B(V1, V2) and vectors x ∈ V1, y ∈ V2. We have
x = r1v1 + · · · + rmvm and y = s1w1 + · · · + snwn for some
scalars ri , sj . Using bilinearity of f , we obtain

f (x, y) = f (r1v1 + · · · + rmvm, y) =
m∑

i=1

ri f (vi , y)

=
m∑

i=1

ri f (vi , s1w1 + · · · + snwn) =
m∑

i=1

n∑

j=1

risj f (vi ,wj)

= (r1, r2 . . . , rm)







f (v1,w1) f (v1,w2) . . . f (v1,wn)
f (v2,w1) f (v2,w2) . . . f (v2,wn)

...
...

. . .
...

f (vm,w1) f (vm,w2) . . . f (vm,wn)













s1
s2
...
sn







= ([x]α)t C [y]β

for some matrix C ∈ Mm,n(F). Then f = fC .


