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Linear Algebra II

Lecture 14:

General linear equations.

Elementary matrices.



General linear equations

Definition. A linear equation is an equation of the form

L(x) = b,

where L : V → W is a linear mapping, b is a given vector
from W , and x is an unknown vector from V .

The range of L is the set of all vectors b ∈ W such that the
equation L(x) = b has a solution.

The null-space of L is the solution set of the homogeneous

linear equation L(x) = 0.

Theorem If the linear equation L(x) = b is solvable and
dimN (L) < ∞, then the general solution is

x0 + t1v1 + · · ·+ tkvk ,

where x0 is a particular solution, v1, . . . , vk is a basis for the
null-space N (L), and t1, . . . , tk are arbitrary scalars.



Example.

{

x + y + z = 4,
x + 2y = 3.

L : R3 → R
2, L





x

y

z



 =

(

1 1 1
1 2 0

)





x

y

z



.

Linear equation: L(x) = b, where b =

(

4

3

)

.

{

x + y + z = 4

x + 2y = 3
⇐⇒

{

x + y + z = 4

y − z = −1

⇐⇒

{

x + 2z = 5

y − z = −1
⇐⇒

{

x = 5− 2z

y = −1 + z

(x , y , z) = (5− 2t,−1 + t, t) = (5,−1, 0) + t(−2, 1, 1).



Example. u′′′(x)− 2u′′(x) + u′(x) = e2x .

Linear operator L : C 3(R) → C (R), Lu = u′′′ − 2u′′ + u′.

Linear equation: Lu = b, where b(x) = e2x .

According to the theory of differential equations, the initial
value problem














u′′′(x)− 2u′′(x) + u′(x) = g(x), x ∈ R,

u(a) = b0,

u′(a) = b1,

u′′(a) = b2

has a unique solution for any g ∈ C (R) and any
b0, b1, b2 ∈ R. It follows that L(C 3(R)) = C (R).

Also, the initial data evaluation I (u) = (u(a), u′(a), u′′(a)),
which is a linear mapping I : C 3(R) → R

3, is one-to-one and
onto when restricted to N (L). Hence dimN (L) = 3.

It is easy to check that L(xex) = L(ex) = L(1) = 0. One can
also show that xex , ex , and 1 are linearly independent.



Example. u′′′(x)− 2u′′(x) + u′(x) = e2x .

Linear operator L : C 3(R) → C (R),
Lu = u′′′ − 2u′′ + u′.

Linear equation: Lu = b, where b(x) = e2x .

It follows from the previous slide that functions xex ,
ex and 1 form a basis for the null-space of L. It

remains to find a particular solution.

L(e2x) = 8e2x − 2(4e2x) + 2e2x = 2e2x .

Since L is a linear operator, L
(

1

2
e2x

)

= e2x .

Particular solution: u0(x) =
1

2
e2x .

Thus the general solution is

u(x) = 1

2
e2x + t1xe

x + t2e
x + t3.



Elementary row operations for matrices:

(1) to interchange two rows;

(2) to multiply a row by a nonzero scalar;

(3) to add the ith row multiplied by some scalar r

to the jth row.

Remark. Rows are added and multiplied by scalars
as vectors (namely, row vectors).

Similarly, we define three types of elementary

column operations.



Elementary row operations











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











=











v1
v2
...
vm











,

where vi = (ai1 ai2 . . . ain) is a row vector.



Elementary row operations

Operation 1: to interchange the ith row with the
jth row:























v1
...
vi
...

vj
...

vm























→























v1
...
vj
...

vi
...

vm

























Elementary row operations

Operation 2: to multiply the ith row by r 6= 0:














v1
...
vi
...
vm















→















v1
...
rvi
...
vm

















Elementary row operations

Operation 3: to add the ith row multiplied by r to
the jth row:























v1
...
vi
...
vj
...

vm























→























v1
...
vi
...

vj + rvi
...

vm

























Theorem Any elementary row operation can be
simulated as left multiplication by a certain matrix.

Examples.




1 0 0
0 2 0
0 0 1









a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





a1 a2 a3
2b1 2b2 2b3
c1 c2 c3



,





1 0 0
3 1 0

0 0 1









a1 a2 a3
b1 b2 b3
c1 c2 c3



=





a1 a2 a3
b1+3a1 b2+3a2 b3+3a3

c1 c2 c3



,





1 0 0

0 0 1
0 1 0









a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





a1 a2 a3
c1 c2 c3
b1 b2 b3



.



Elementary matrices

E =



















1 O
. . .

0 · · · 1
... . . . ...
1 · · · 0

. . .
O 1



















row #i

row #j

To obtain the matrix EA from A, interchange the

ith row with the jth row. To obtain AE from A,
interchange the ith column with the jth column.



Elementary matrices

E =



















1
. . . O

1
r

1
O

. . .
1



















row #i

To obtain the matrix EA from A, multiply the ith

row by r . To obtain the matrix AE from A,
multiply the ith column by r .



Elementary matrices

E =



















1
... . . . O
0 · · · 1
...

... . . .
0 · · · r · · · 1
...

...
... . . .

0 · · · 0 · · · 0 · · · 1



















row #i

row #j

To obtain the matrix EA from A, add r times the
ith row to the jth row. To obtain the matrix AE

from A, add r times the jth column to the ith
column.



Notice that the elementary matrix Eσ simulating an

elementary row operation σ is obtained by applying
σ to the identity matrix. In particular, this implies

that Eσ is unique.

Theorem Any elementary row operation σ1 can be
undone by applying another elementary row

operation σ2. Moreover, the operation σ1 will undo
the operation σ2.

Corollary Elementary matrices are invertible.

Proof: Let E be an elementary matrix simulating an
elementary row operation σ. Let τ be the operation such that
σ and τ undo each other. The operation τ is simulated as left
multiplication by some matrix E0. Then E0EA = EE0A = A

for any matrix A. When A = I , we get E0E = EE0 = I .


