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Linear Algebra II

Lecture 15:
Inverse matrix (continued).

Transpose of a matrix.



Elementary row operations for matrices:
(1) to interchange two rows;
(2) to multiply a row by a nonzero scalar;
(3) to add the ith row multiplied by some scalar r

to the jth row.

Similarly, we define three types of elementary

column operations.

• Any elementary row operation σ on matrices with n rows
can be simulated as left multiplication by a certain n×n matrix
E

σ
(called elementary).

• The elementary matrix E
σ

is obtained by applying the
operation σ to the identity matrix.

• Any elementary column operation can be simulated as
right multiplication by a certain elementary matrix.

• Elementary matrices are invertible.



General results on inverse matrices

Theorem 1 Given a square matrix A, the following are
equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0
(where x and 0 are column vectors).

Theorem 2 For any n×n matrices A and B ,

BA = I ⇐⇒ AB = I ⇐⇒ B = A−1.

Theorem 3 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix. Then
A is invertible. Moreover, the same sequence of operations
converts the identity matrix into the inverse matrix A−1.



Theorem 1 Given an n×n matrix A, the following are
equivalent: (i) A is invertible; (ii) x = 0 is the only solution
of the matrix equation Ax = 0.

Proof: (i) =⇒ (ii) Assume A is invertible. Take any column
vector x such that Ax = 0. Then A−1(Ax) = A−10. We
have A−1(Ax) = (A−1A)x = Ix = x and A−10 = 0. Hence
x = 0.

(ii) =⇒ (i) Assume x = 0 is the only solution of the matrix
equation Ax = 0. Consider a linear operator LA : F

n → F
n

given by LA(x) = Ax. By assumption, the null-space N (LA)
is trivial. It follows that LA is one-to-one. By the Dimension
Theorem, dimR(LA) + dimN (LA) = dim F

n = n. Then
dimR(LA) = n, which implies that R(LA) = F

n. That is, LA

is onto. Thus LA is an invertible mapping.
The inverse L−1

A
is also linear. Hence L−1

A
(x) = Bx for

some n×n matrix B and any column vector x ∈ F
n. Clearly,

L−1

A
(LA(x)) = x = LA(L−1

A
(x)), i.e., BAx = x = ABx, for all

x. It follows that BA = I = AB . Thus B = A−1.



Theorem 2 For any n×n matrices A and B ,

BA = I ⇐⇒ AB = I ⇐⇒ B = A−1.

Proof: [BA = I =⇒ B = A−1] Assume BA = I .
Take any column vector x such that Ax = 0. Then
B(Ax) = B0. We have B(Ax) = (BA)x = Ix = x
and B0 = 0. Hence x = 0. By Theorem 1, A is
invertible. Then BA = I =⇒ (BA)A−1 = IA−1

=⇒ B = A−1.

[AB = I =⇒ B = A−1] Assume AB = I . By the
above B is invertible and A = B−1. The latter is
equivalent to B = A−1.



Proof of Theorem 3

Assume that a square matrix A can be converted to
the identity matrix by a sequence of elementary row
operations. Then

EkEk−1 . . . E2E1A = I ,

where E1, E2, . . . , Ek are elementary matrices
simulating those operations.

Applying the same sequence of operations to the
identity matrix, we obtain the matrix

B = EkEk−1 . . . E2E1I = EkEk−1 . . . E2E1.

Thus BA = I , which, by Theorem 2, implies that
B = A−1.



Let V denote the set of all solutions of a differential equation
u′′′(x) − 2u′′(x) + u′(x) = 0, x ∈ R.

The set V is a subspace of C 3(R) since it is the null-space of
a linear diffrential oprator L : C 3(R) → C (R) given by
Lu = u′′′ − 2u′′ + u′.

According to the theory of differential equations, the initial
value problem














u′′′(x) − 2u′′(x) + u′(x) = 0, x ∈ R,

u(0) = b0,

u′(0) = b1,

u′′(0) = b2

has a unique solution for any b0, b1, b2 ∈ R. In other words, a
linear mapping J : V → R

3, given by
J(u) =

(

u(0), u′(0), u′′(0)
)

, is one-to-one and onto, i.e.,
invertible.

Problem. Find the inverse transformation J−1.



We know from the previous lecture that functions
u1(x) = 1, u2(x) = ex , and u3(x) = xex form a
basis for V . Let α denote this basis and β denote
the standard basis for R

3. We are going to find the
matrix [J ]βα.

u′
1
(x) = u′′

1
(x) = 0, u′

2
(x) = u′′

2
(x) = ex ,

u′
3
(x) = xex + ex , u′′

3
(x) = xex + 2ex .

[J ]βα =





u1(0) u2(0) u3(0)
u′

1
(0) u′

2
(0) u′

3
(0)

u′′
1
(0) u′′

2
(0) u′′

3
(0)



 =





1 1 0
0 1 1
0 1 2



.

Let A = [J ]βα. Then the matrix [J−1]αβ is A−1.



A convenient way to compute the inverse matrix
A−1 is to merge the matrices A and I into one 3×6
matrix (A | I ) and apply elementary row operations
to this new matrix. The goal is to get a matrix of
the form (I |B), then B = A−1.

A =





1 1 0
0 1 1
0 1 2



, I =





1 0 0
0 1 0
0 0 1





(A | I ) =





1 1 0 1 0 0
0 1 1 0 1 0
0 1 2 0 0 1







(A | I ) =





1 1 0 1 0 0
0 1 1 0 1 0
0 1 2 0 0 1



 →





1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 0 −1 1



 →





1 1 0 1 0 0
0 1 0 0 2 −1
0 0 1 0 −1 1





→





1 0 0 1 −2 1
0 1 0 0 2 −1
0 0 1 0 −1 1



 = (I |A−1).

It follows that J−1(e1) = u1, J−1(e2) = −2u1 + 2u2 − u3,
J−1(e3) = u1 − u2 + u3.

For any vector (y1, y2, y3) ∈ R
3 we have J−1(y1, y2, y3) = f ,

where f = y1u1 + y2(−2u1 + 2u2 − u3) + y3(u1 − u2 + u3) so
that f (x) = (y1 − 2y2 + y3) + (2y2 − y3)e

x + (−y2 + y3)xe
x .



Transpose of a matrix

Definition. Given a matrix A, the transpose of A,
denoted At , is the matrix whose rows are columns
of A (and whose columns are rows of A). That is,
if A = (aij) then At = (bij), where bij = aji .

Examples.

(

1 2 3
4 5 6

)t

=





1 4
2 5
3 6



,





7
8
9





t

= (7, 8, 9),

(

4 7
7 0

)t

=

(

4 7
7 0

)

.



Properties of transposes:

• (At)t = A

• (A + B)t = At + B t

• (rA)t = rAt

• (AB)t = B tAt

• (A1A2 . . . Ak)
t = At

k . . . At
2
At

1

• (A−1)t = (At)−1


