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Linear Algebra II

Lecture 22:
Diagonalization (continued).

Matrix polynomials.



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L : V → V be a linear operator. Let v1, v2, . . . , vn

be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors v1, v2, . . . , vn are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

L(vi) = λivi ⇐⇒ A =







λ1 O

λ2

. . .
O λn









Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an n×n matrix. Then the following
conditions are equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as
A = UBU−1, where the matrix B is diagonal;
• there exists a basis for F

n formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



Diagonalization of a matrix

The diagonalization of an n×n matrix A consists of finding
a diagonal matrix B and an invertible matrix U such that
A = UBU−1. Suppose we have such a representation. Let
v1, v2, . . . , vn be consecutive columns of the matrix U . These
are linearly independent vectors (since U is invertible), hence
they form a basis β for F

n. Then U is the transition matrix
from β to the standard basis α. Consider a linear operator LA

on F
n given by LA(x) = Ax. We have [LA]α = A. Therefore

[LA]β = [id]βα[LA]αα[id]αβ = U−1AU = U−1(UBU−1)U = B .

Thus the matrix of LA relative to the basis β is diagonal,
which implies that β consists of eigenvectors of LA (i.e., of A).

Conversely, suppose there exists a basis v1, v2, . . . , vn for F
n

formed by eigenvectors of the matrix A: Avi = λivi , 1 ≤ i ≤ n.
Then A = UBU−1, where U = (v1, v2, . . . , vn) and
B = diag(λ1, λ2, . . . , λn).



Problem. Diagonalize the matrix A =

(
4 3
0 1

)

.

We need to find a diagonal matrix B and an
invertible matrix U such that A = UBU−1.

Suppose that v1 =

(
x1

y1

)

, v2 =

(
x2

y2

)

is a basis for

R
2 formed by eigenvectors of A, i.e., Avi = λivi for

some λi ∈ R. Then we can take

B =

(
λ1 0
0 λ2

)

, U =

(
x1 x2

y1 y2

)

.

Note that U is the transition matrix that changes
coordinates from v1, v2 to the standard basis.



Problem. Diagonalize the matrix A =

(
4 3
0 1

)

.

Characteristic equation of A:

∣
∣
∣
∣

4 − λ 3
0 1 − λ

∣
∣
∣
∣
= 0.

(4 − λ)(1 − λ) = 0 =⇒ λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 =

(
1
0

)

, v2 =

(
−1

1

)

.

Thus A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal
matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,
it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square
matrix A, to find its power Ak :

A =







s1 O

s2
. . .

O sn







=⇒ Ak =







sk
1 O

sk
2

. . .

O sk
n









Problem. Let A =

(
4 3
0 1

)

. Find A5.

We know that A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Then A5 = UBU−1UBU−1UBU−1UBU−1UBU−1

= UB5U−1 =

(
1 −1
0 1

) (
1024 0

0 1

) (
1 1
0 1

)

=

(
1024 −1

0 1

) (
1 1
0 1

)

=

(
1024 1023

0 1

)

.



Problem. Let A =

(
4 3
0 1

)

. Find Ak (k ≥ 1).

We know that A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Then

Ak = UBkU−1 =

(
1 −1
0 1

) (
4k 0
0 1

) (
1 1
0 1

)

=

(
4k −1
0 1

) (
1 1
0 1

)

=

(
4k 4k − 1
0 1

)

.



Matrix polynomials

Definition. Given an n×n matrix A, we let

A2 = AA, A3 = AAA, . . . , Ak = AA . . . A︸ ︷︷ ︸

k times

, . . .

Also, let A1 = A and A0 = In.

Associativity of matrix multiplication implies that all powers
Ak are well defined and AjAk = Aj+k for all j , k ≥ 0. In
particular, all powers of A commute.

Definition. For any polynomial

p(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm,

let p(A) = c0A
m + c1A

m−1 + · · · + cm−1A + cmIn.



Example. p(x) = x2 − 3x + 1, C =

(
2 1
1 1

)

.

p(C ) = C 2 − 3C + I =

(
2 1
1 1

)2

− 3

(
2 1
1 1

)

+

(
1 0
0 1

)

=

(
5 3
3 2

)

−

(
6 3
3 3

)

+

(
1 0
0 1

)

=

(
0 0
0 0

)

.

Thus C 2 − 3C + I = O.

Remark. p(x) is the characteristic polynomial of
the matrix C .



Properties of matrix polynomials

Suppose A is a square matrix, p(x), p1(x), p2(x) are
polynomials, and r is a scalar. Then

p(x) = p1(x)+p2(x) =⇒ p(A) = p1(A) + p2(A)

p(x) = rp1(x) =⇒ p(A) = rp1(A)

p(x) = p1(x)p2(x) =⇒ p(A) = p1(A)p2(A)

p(x) = p1(p2(x)) =⇒ p(A) = p1(p2(A))

In particular, matrix polynomials p1(A) and p2(A)
always commute.

Theorem If A = diag(s1, s2, . . . , sn) then

p(A) = diag
(
p(s1), p(s2), . . . , p(sn)

)
.



Examples.

• (A − I )(A + I ) = A2 − I

• (A + I )2 = A2 + 2A + I

• (A − I )2 = A2 − 2A + I

• (A + I )3 = A3 + 3A2 + 3A + I

• (A − I )3 = A3 − 3A2 + 3A − I

• (A − I )(A2 + A + I ) = A3 − I

• (A + I )(A2 − A + I ) = A3 + I

Remark. On the other hand, the matrix equality
(A−B)(A + B) = A2 −B2 holds only if AB = BA.



Problem. Let A =

(
4 3
0 1

)

. Find I + 2A − A3.

We have A = UBU−1, where B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Then A2 = UBU−1UBU−1 = UB2U−1,
A3 = A2A = UB2U−1UBU−1 = UB3U−1.
Further, I + 2A − A3 = UIU−1 + 2UBU−1 − UB3U−1

= U(I + 2B − B3)U−1. That is, p(A) = Up(B)U−1, where
p(x) = 1 + 2x − x3. Thus

p(A) =

(
1 −1
0 1

) (
p(4) 0
0 p(1)

) (
1 1
0 1

)

=

(
1 −1
0 1

) (
−55 0
0 2

) (
1 1
0 1

)

=

(
−55 −57
0 2

)

.

Theorem If A = UBU−1, then
p(A) = Up(B)U−1 for any polynomial p(x).


