
MATH 423

Linear Algebra II

Lecture 25:

Markov chains (continued).
The Cayley-Hamilton theorem (continued).



Markov chain

Stochastic (or random) process is a sequence of
experiments for which the outcome at any stage
depends on a chance.

We consider a simple model, with a finite set S of
possible outcomes (called states) and discrete time.
Then the stochastic process is a sequence
s0, s1, s2, . . . , where all sn ∈ S depend on chance.

Markov chain is a stochastic process with discrete
time such that the probability of the next outcome
depends only on the previous outcome.



Let S = {1, 2, . . . , k}. The Markov chain is determined by

transition probabilities p
(t)
ij , 1 ≤ i , j ≤ k , t ≥ 0, and by the

initial probability distribution qi , 1 ≤ i ≤ k .

Here qi is the probability of the event s0 = i , and p
(t)
ij is the

conditional probability of the event st+1 = j provided that

st = i . By construction, p
(t)
ij , qi ≥ 0,

∑

i qi = 1, and
∑

j p
(t)
ij = 1.

We shall assume that the Markov chain is time-independent,

i.e., transition probabilities do not depend on time: p
(t)
ij = pij .

Then a Markov chain on S = {1, 2, . . . , k} is determined by a
probability vector x0 = (q1, q2, . . . , qk) ∈ R

k and a k×k

transition matrix P = (pij). The entries in each row of P

add up to 1.



Example: random walk

1

2

3

Transition matrix: P =





0 1/2 1/2
0 1/2 1/2
1 0 0







Problem. Find the (unconditional) probability
distribution for any sn, n ≥ 1.

The probability distribution of sn−1 is given by a
probability vector xn−1 = (a1, . . . , ak). The
probability distribution of sn is given by a vector
xn = (b1, . . . , bk).

We have

bj = a1p1j + a2p2j + · · · + akpkj , 1 ≤ j ≤ k .

That is,

(b1, . . . , bk) = (a1, . . . , ak)





p11 . . . p1k
... . . . ...

pk1 . . . pkk



.



xn = xn−1P =⇒ xt
n = (xn−1P)t = P txt

n−1
.

Thus xt
n = Qxt

n−1
, where Q = P t and the vectors

are regarded as row vectors.

Then xt
n = Qxt

n−1
= Q(Qxt

n−2
) = Q2xt

n−2
.

Similarly, xt
n = Q3xt

n−3
, and so on.

Finally, xt
n = Qnxt

0
.



Example. Very primitive weather model:

Two states: “sunny” (1) and “rainy” (2).

Transition matrix: P =

(

0.9 0.1
0.5 0.5

)

.

Suppose that x0 = (1, 0) (sunny weather initially).

Problem. Make a long-term weather prediction.

The probability distribution of weather for day n is
given by the vector xt

n = Qnxt
0
, where Q = P t .

To compute Qn, we need to diagonalize the matrix

Q =

(

0.9 0.5
0.1 0.5

)

.



det(Q − λI ) =

∣

∣

∣

∣

0.9 − λ 0.5
0.1 0.5 − λ

∣

∣

∣

∣

=

= λ2 − 1.4λ + 0.4 = (λ − 1)(λ − 0.4).

Two eigenvalues: λ1 = 1, λ2 = 0.4.

(Q − I )v = 0 ⇐⇒

(

−0.1 0.5
0.1 −0.5

) (

x

y

)

=

(

0
0

)

⇐⇒ (x , y) = t(5, 1), t ∈ R.

(Q − 0.4I )v = 0 ⇐⇒

(

0.5 0.5
0.1 0.1

) (

x

y

)

=

(

0
0

)

⇐⇒ (x , y) = t(−1, 1), t ∈ R.

v1 = (5, 1)t and v2 = (−1, 1)t are eigenvectors of
Q belonging to eigenvalues 1 and 0.4, respectively.



xt
0

= αv1 + βv2 ⇐⇒

{

5α − β = 1
α + β = 0

⇐⇒

{

α = 1/6
β = −1/6

Now xt
n = Qnxt

0
= Qn(αv1 + βv2) =

= α(Qnv1) + β(Qnv2) = αv1 + (0.4)nβv2,

which converges to the vector αv1 = (5/6, 1/6)t as
n → ∞.

The vector x∞ = (5/6, 1/6) gives the limit

distribution. Also, it is a steady-state vector.

Remarks. In this example, the limit distribution does not
depend on the initial distribution, but it is not always so.
However 1 is always an eigenvalue of the matrix P (and hence
Q) since P (1, 1, . . . , 1)t = (1, 1, . . . , 1)t .



Multiplication of block matrices

Theorem Suppose that matrices X and Y are represented as

block matrices: X =

(

A B

C D

)

, Y =

(

P Q

R S

)

.

Then XY =

(

AP + BR AQ + BS

CP + DR CQ + DS

)

provided that all

matrix products are well defined.

Corollary 1 Suppose that (m + n)×(m + n) matrices X and
Y are represented as block matrices:

X =

(

A U

O B

)

, Y =

(

A1 U1

O B1

)

,

where A and A1 are m×m matrices, B and B1 are n×n

matrices, and O is the n×m zero matrix. Then

XY =

(

AA1 U2

O BB1

)

for some m×n matrix U2.



Corollary 2 Suppose that a square matrix X is represented as

a block matrix: X =

(

A U

O B

)

, where A and B are square

matrices and O is a zero matrix. Then for any polynomial

p(x) we have p(X ) =

(

p(A) Up

O p(B)

)

, where the matrix Up

depends on p.

Corollary 3 Using notation of Corollary 2, if p1(A) = O and
p2(B) = O for some polynomials p1 and p2, then p(X ) = O,
where p(x) = p1(x)p2(x).

Proof: We have p(X ) = p1(X )p2(X ). By Corollary 2,

p1(X ) =

(

O Up1

O p1(B)

)

, p2(X ) =

(

p2(A) Up2

O O

)

.

Multiplying these block matrices, we get the zero matrix.



Cayley-Hamilton Theorem

Theorem If A is a square matrix, then p(A) = O, where
p(x) is the characteristic polynomial of A, p(λ) = det(A−λI ).

Proof for a complex matrix A: The proof is by induction on
the number n of rows in A. The base of induction is the case
n = 1. This case is trivial as A = (a) and p(x) = a − x .

For the inductive step, we are to prove that the theorem
holds for n = k + 1 assuming it holds for n = k (k any
positive integer). Let a0 be any complex eigenvalue of A and
v0 a corresponding eigenvector. Then p(x) = (a0 − x)p0(x)
for some polynomial p0. Let us extend vector v0 to a basis for
C

n (denoted α). We have A = UXU−1, where U changes
coordinates from α to the standard basis and X is a block

matrix of the form X =

(

a0 C

O B

)

.



Cayley-Hamilton Theorem

We have A = UXU−1, where U changes coordinates from α
to the standard basis and X is a block matrix of the form

X =









a0 c1 . . . ck

0
... B

0









.

The characteristic polynomial of X is p since the matrix X is
similar to A. We know from the previous lecture that
p(x) = p1(x)p2(x), where p1 and p2 are characteristic
polynomials of (a1) and B , resp. Since p1(x) = a0 − x and
p(x) = (a0 − x)p0(x), we obtain p2(x) = p0(x).

By the inductive assumption, p0(B) = O. By Corollary 3,
p(X ) = O. Finally, p(A) = Up(X )U−1 = UOU−1 = O.



Example. A =





2 0 1
0 1 1
0 0 1



.

Characterictic polynomial:

p(λ) = det(A − λI ) = (2 − λ)(1 − λ)2

= (2 − λ)(1 − 2λ + λ2) = 2 − 5λ + 4λ2 − λ3.

By the Cayley-Hamilton theorem,

2I − 5A + 4A2 − A3 = O

=⇒ 1

2
A(A2 − 4A + 5I ) = I

=⇒ A−1 = 1

2
(A2 − 4A + 5I ).


