MATH 423
Linear Algebra Il

Lecture 25:
Markov chains (continued).
The Cayley-Hamilton theorem (continued).



Markov chain

Stochastic (or random) process is a sequence of
experiments for which the outcome at any stage
depends on a chance.

We consider a simple model, with a finite set S of
possible outcomes (called states) and discrete time.
Then the stochastic process is a sequence

S0, 51,5, ..., where all s, € S depend on chance.

Markov chain is a stochastic process with discrete
time such that the probability of the next outcome
depends only on the previous outcome.



Let S={1,2,...,k}. The Markov chain is determined by
transition probabilities p\, 1 <i,j <k, t >0, and by the
initial probability distribution g;, 1 </ < k.

Here g; is the probability of the event sy =/, and pfjt) is the
conditional probability of the event s;;; = provided that
s; = i. By construction, pg-t) >0, >, =1, and

U?
> =1.

We shall assume that the Markov chain is time-independent,
i.e., transition probabilities do not depend on time: p,(jt) = pjj.
Then a Markov chainon S ={1,2,..., k} is determined by a
probability vector xo = (q1,q2,...,qx) € R and a kxk
transition matrix P = (p;). The entries in each row of P
add up to 1.



Example: random walk

0 1/2 1/2
Transition matrix: P= [0 1/2 1/2
1 0 0



Problem. Find the (unconditional) probability
distribution for any s,, n > 1.

The probability distribution of s,_1 is given by a
probability vector x, 1 = (a1,...,ax). The
probability distribution of s, is given by a vector
Xnp = (bl, ceey bk)
We have

b; = aipij + apoj + - - +akpij, 1 <j < k.
That is,
pi1 ... Pik
(bl,...,bk):(al,...,ak) T
Pk1 .- Pk



X, =X%X1P = xf=(x,_1P)" = P'x_;.

Thus x, = @x!_;, where Q = P' and the vectors
are regarded as row vectors.
Then x! = Qx!_; = Q(Qx!_,) = Q! _,.

mi t __ 3yt
Similarly, x; = Q°x;_3, and so on.

H t __ nyt
Finally, |x; = Q"x.




Example. Very primitive weather model:
Two states: “sunny” (1) and “rainy” (2).

. . (0.9 0.1
Transition matrix: P = <0.5 05).

Suppose that xo = (1,0) (sunny weather initially).

Problem. Make a long-term weather prediction.

The probability distribution of weather for day n is
given by the vector x! = Q"x}, where Q = P'.
To compute ", we need to diagonalize the matrix

0.9 0.5
Q= <o.1 0.5)'



det(Q - A) |0.9—)\ 0.5 |_

0.1 05—\
=\ —14\+04= (A—=1)(A—0.4).
Two eigenvalues: A1 =1, A\, =0.4.

@-nv=0 = (01 3) ;)=o)

— (x,y)=1t(51), teR.

@-omv=0 = (g7 ¢7) (5)= (o)

— (x,y)=1t(-1,1), t e R

vi = (5,1)" and v, = (—1,1)" are eigenvectors of
@ belonging to eigenvalues 1 and 0.4, respectively.



x§ = av; + Qv <— {

S5a— (=1 a=1/6
atf=0 {B:—1/6

Now xi = Q"x§ = Q"(av; + fvy) =
= oz(Q”Vl) + ﬁ(QnVQ) = avy + (0.4)”6V2,

which converges to the vector av; = (5/6,1/6)"
n — oo.

The vector x., = (5/6,1/6) gives the limit
distribution. Also, it is a steady-state vector.

Remarks. In this example, the limit distribution does not
depend on the initial distribution, but it is not always so.

However 1 is always an eigenvalue of the matrix P (and hence
Q) since P(1,1,...,1)*=(1,1,..., 1)~



Multiplication of block matrices

Theorem Suppose that matrices X and Y are represented as

. (A B (P Q
block matrices: X(C D)’ Y(R 5).

AP + BR AQ + BS
CP+ DR CQ+ DS
matrix products are well defined.

Then XY = ) provided that all

Corollary 1 Suppose that (m+ n)x(m+ n) matrices X and
Y are represented as block matrices:

(AU (A U
X = (o B)' Y= (o Bl>’
where A and A; are mx m matrices, B and B; are nxn
matrices, and O is the nxm zero matrix. Then

Xy — (AAl U

0 BBl> for some mxn matrix U,.



Corollary 2 Suppose that a square matrix X is represented as

g g) where A and B are square

matrices and O is a zero matrix. Then for any polynomial

p(x) we have p(X) = (P(é) péjé)) where the matrix U,

depends on p.

a block matrix: X = (

Corollary 3 Using notation of Corollary 2, if p;(A) = O and
p2(B) = O for some polynomials p; and p,, then p(X) = O,

where p(x) = pa(x)p2(x).
Proof: We have p(X) = p1(X)p2(X). By Corollary 2,

)= (§ ) 0= (750 %)

Multiplying these block matrices, we get the zero matrix.



Cayley-Hamilton Theorem

Theorem If A is a square matrix, then p(A) = O, where
p(x) is the characteristic polynomial of A, p()\) = det(A— /).

Proof for a complex matrix A:  The proof is by induction on
the number n of rows in A. The base of induction is the case
n=1. This case is trivial as A= (a) and p(x) =a— x.

For the inductive step, we are to prove that the theorem
holds for n = k + 1 assuming it holds for n = k (k any
positive integer). Let ap be any complex eigenvalue of A and
Vo a corresponding eigenvector. Then p(x) = (ap — x)po(x)
for some polynomial pg. Let us extend vector vq to a basis for
C" (denoted o). We have A = UXU™!, where U changes
coordinates from « to the standard basis and X is a block

. ) C
matrix of the form X = (O B)'



Cayley-Hamilton Theorem

We have A = UXU™!, where U changes coordinates from o
to the standard basis and X is a block matrix of the form

ala .. )
0

X =
0
The characteristic polynomial of X is p since the matrix X is
similar to A.  We know from the previous lecture that
p(x) = p1(x)p2(x), where p; and p, are characteristic
polynomials of (a;) and B, resp. Since p;(x) = ap — x and
p(x) = (a0 — x)po(x), we obtain py(x) = po(x).

By the inductive assumption, po(B) = O. By Corollary 3,
p(X) = O. Finally, p(A) = Up(X)U™! = UOU~! = O.



Example. A=

O ON
O - O

1
1
1

Characterictic polynomial:
p(A) =det(A— X)) =(2—)2)(1—))?
=(2=AN)(1 =22+ X)) =2—-5)+4)2 - )3

By the Cayley-Hamilton theorem,
2l —BA+4A2 - A =0

A(A2 —4A +51) = |

1= 2(A? - 4A+5]).
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