MATH 423
Linear Algebra Il
Lecture 32:

Adjoint operator (continued).
Normal operators.



Dual of an inner product space

Let V be a vector space with an inner product (-, -).
For any y € V' consider a function ¢y : V — I
given by (y(x) = (x,y) forall x € V. This
function is linear.

Theorem Let 0:V — V' be given by 0(v) = 4,.
Then (i) 0 is linear if F =R and half-linear if
F=C.

(ii) 6 is one-to-one, that is, v is uniquely recovered
by /4,.

(iii) If V is finite-dimensional, then 6 is onto, i.e.,
any linear functional on V' is uniquely represented as
¢, for some v € V.



Adjoint operator

Let L be a linear operator on an inner product space V.

Definition. The adjoint of L is a transformation L*: V — V
satisfying (L(x),y) = (x, L*(y)) for all x,y € V.

An equivalent condition is that {yol = {;. forall y € V.
Notice that the adjoint of L may not exist.

Theorem (i) If the adjoint operator L* exists, it is unique and
linear. (ii) If V is finite-dimensional, then L* always exists.

Properties of adjoint operators:

o (Li+ L) =Li+L;
o (rL)*=7L*

o (Liolp)" = Lsolg

e id}, =idy



Adjoint matrix

Suppose A = (a;) is an mxn matrix with complex entries.
The adjoint matrix of A is an nxm matrix A* = (b;) such
that b; = 3j. In other words, A* = At.

Properties of adjoint matrices:

e (A+B)=A"+B*
o (rA) =T A*

o (AB)" = B*A*

o (A=A

o [*=

° (A_l)* — (A*)_l

Theorem Let L be a linear operator on an inner product
space V of finite dimension. If £ is an orthonormal basis for
V. then [L']s = ([L]5)""



Theorem Let L be a linear operator on an inner
product space V of finite dimension. If £ is an
orthonormal basis for V/, then [L*]s = ([L]5)".

Proof: Let [ =[vi,Vo,...,Vv,]. Let A= (a;) be
the matrix of L and B = (b;;) be the matrix of L*
relative to this basis.

By definition, aj; is the ith coordinate of the vector
L(v;). Since the basis 3 is orthonormal, we have
aj = (L(vj),vj). Likewise, bj = (L*(v;),v;).

For any indices i, J,
bij = (L*(v;), vi) = (vi, L*(v;)) = (L(vi), vj) = 3.
Thus B = A"




Example. V =C?, (x,y) = xiy1 + x5
L(z1,20) = (z1 — 2izp, 321 + izp).

L is a linear operator. The matrix of L relative to

the standard basisis A = (; _2I.I>.

Since the standard basis is orthonormal, the matrix

of the adjoint L* is A* = At = <21’ _?)

Therefore L* <21> = < 1 3) <21>.
7 21 —i) \ 2

Equivalently, L*(z1,2) = (z1 + 32z, 2iz1 — iz).



Example. V = C([2,b]), (f.g) — / F()g(x) dx.
L(F) = F" i

b
(L(F), g) = / F(x)g(x) dx

~ F(el)| ~ [ Fg0) o

= f(b)g(b) — f(a)g(a) + (f, —L(g))-
If g(a) #0 or g(b) # 0, then there is no function
h € C>=(][a, b]) such that
f(b)g(b) —f(a)g(a) = (f, h)
for all f € C*([a, b]). Therefore the operator L
has no adjoint.




Example. V = (CJa, b],C), (f,g>:/ f(x)g(x) dx.

b
(LF)(x) :/ K(x,y)f(y)dy, where K is a continuous

function on [a, b] X [a, b]. The operator L is called an
integral operator; the function K is called the kernel of L.

wone = [ ([ Ko ay )eas

// (x, y)F(y)g(x) dx dy
:/a f(y)(/a Ky ()dx) dy = (7. 1(a))

where Lis an integral operator with the kernel
K(x,y) = K(y,x). Thus L is the adjoint operator of L.




Normal operators

Definition. A linear operator L on an inner product
space V is called normal if it commutes with its
adjoint. That is, if the adjoint operator L* exists
and Lol* = [*ol.

There are several special classes of normal operators
important for applications.

The operator L is self-adjoint if L* = L.
Equivalently, (L(x),y) = (x, L(y)) for all x,y € V.

The operator L is anti-selfadjoint if L* = —L.
The operator L is unitary if [* = L1,



Normal matrices

Definition. A square matrix A with real or complex entries is
normal if AA* = A*A.

Theorem Let L be a linear operator on a finite-dimensional
inner product space. Suppose A is the matrix of L relative to
an orthonormal basis. Then the operator L is normal if and
only if the matrix A is normal.

Special classes of normal operators give rise to special classes
of normal matrices.

A matrix A€ M, ,(C) is Hermitian if A* = A,
skew-Hermitian if A* = —A, and unitary if A* = A™L.

A square matrix B with real entries is symmetric if B* = B,
skew-symmetric if Bf = —B, and orthogonal if Bt = B~ 1



