MATH 423
Linear Algebra Il

Lecture 34:
Unitary operators.
Orthogonal matrices.



Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner
product space V is normal if and only if there exists an
orthonormal basis for V' consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then
(i) L is self-adjoint if and only if all eigenvalues of L are real

(A=),

(i) L is anti-selfadjoint if and only if all eigenvalues of L are
purely imaginary (A = —\);

(iii) L is unitary if and only if all eigenvalues of L are of
absolute value 1 (A = A71).

Idea of the proof: L(x) = Ax <= L*(x) = Ax.
Corollary 2 A linear operator L on a finite-dimensional, real

inner product space V is self-adjoint if and only if there exists
an orthonormal basis for V' consisting of eigenvectors of L.



Diagonalization of normal matrices

Theorem Matrix A € M, ,(C) is normal if and only if
there exists an orthonormal basis for C” consisting of
eigenvectors of A.

Corollary 1 Suppose A € M, ,(C) is a normal matrix. Then

(i) Ais Hermitian if and only if all eigenvalues of A are real;
(ii) A is skew-Hermitian if and only if all eigenvalues of A are
purely imaginary;

(iii) A is unitary if and only if all eigenvalues of A are of
absolute value 1.

Corollary 2 Matrix A € M, ,(R) is symmetric if and only if
there exists an orthonormal basis for R” consisting of
eigenvectors of A.
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Characteristic polynomial:
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Example. A, = ( > ¢ € R.

det(As — \) = ’ = (cos ¢ — \)? +sin’ ¢.

Eigenvalues: \; = cos ¢ + isin¢ = e'?,
Ay =COS — ising = e '?,

Associated eigenvectors: v = (1, —0)", vo = (1,1)"

_[cosp —sing 1\ [cosp+ising)
Apvt = < sin¢ cosqb)(—i) o (sinqﬁ— icosgf)) = Ava

Note that A\, = A\; and v, = vi. Since the matrix A4 has
real entries, Ayvi = A\jvq implies Agvy = A1 vy

We have (vi,vp) =11+ (=i)-i=1+(—i)? O

(v1,v1) = (v2,vo) = 2. Hence vectors \}_vl and v2 form

an orthonormal basis for C2.



Characterization of unitary matrices

Theorem Given an nxn matrix A with complex
entries, the following conditions are equivalent:

(i) Ais unitary: A* = AL

(ii) columns of A form an orthonormal basis for C”;
(i) rows of A form an orthonormal basis for C”.
Sketch of the proof: Entries of the matrix A*A are inner
products of columns of A. Entries of AA* are inner products
of rows of A. It follows that A*A =1 if and only if the

columns of A form an orthonormal set. Similarly, AA* =1 if
and only if the rows of A form an orthonormal set.

The theorem implies that a unitary matrix is the
transition matrix changing coordinates from one
orthonormal basis to another.



Diagonalization of normal matrices: revisited

Theorem 1 Given an nxn matrix A with complex entries,
the following conditions are equivalent:

(i) Ais normal: A*A = AA*;

(ii) there exists an orthonormal basis for C” consisting of
eigenvectors of A;

(iii) there exists a diagonal matrix D and a unitary matrix U
such that A= UDU™! (= UDU").

Theorem 2 Given an nxn matrix A with real entries, the
following conditions are equivalent:

(i) Ais symmetric: A" = A;

(ii) there exists an orthonormal basis for R” consisting of
eigenvectors of A;

(iii) there exists a diagonal matrix D (with real entries) and
an orthogonal matrix U such that A= UDU! (= UDUY).



Characterizations of unitary operators

Theorem Given a linear operator on a finite-dimensional
inner product space V/, the following conditions are equivalent:
(i) L is unitary;

(i) (L(x), L(y)) = (x,y) for all x,y € V;

(i) [|[L(x)|| = [|x|| for all x € V;

(iv) the matrix of A relative to an orthonormal basis is
unitary;

(v) L maps some orthonormal basis for V' to another
orthonormal basis;

(vi) L maps any orthonormal basis for V' to another
orthonormal basis.

Proof that (i) = (ii): (L(x),L(y)) = (x, L*(L(y))) = (x,y).



