MATH 423-200/500 Spring 2012

Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Find a cubic polynomial p(z) such that p(—2) = 0, p(—1) = 4,
p(1) =0, and p(2) = 4.

Let p(z) = a+bx+cx?+dz?. Then p(—2) = a—2b+4c—8d, p(—1) = a—b+c—d, p(1) = a+b+c+d,
and p(2) = a + 2b + 4c + 8d. The coefficients a, b, ¢, and d are to be chosen so that

a—2b+4c—8d=0,
a—b+c—d=4,
a+b+c+d=0,
a—+2b+ 4c+ 8d = 4.

This is a system of linear equations. Let us convert its augmented matrix to reduced row echelon form
using elementary row operations:

1 -2 4 810 1 11 110 1 1 1 1(0
1 -1 1 —-1/4 . 1 -1 1 —-1|4 . 0 -2 0 —-2|4
1 11 110 1 -2 4 =810 1 =2 4 -8]0
1 2 4 814 1 2 4 814 1 2 4 814
1 1 1 110 1 11 110 1 11 0
. 0 -2 0 —-2|4 N 0 -2 0 —-2|4 . 0 1 0 1|-2
0 -3 3 =910 0 -3 3 =910 0 -3 3 -9| 0
1 2 4 8|4 0 1 3 7|4 0 13 7| 4
11 1 1] 0 11 1 1] 0 11 1 1] 0
- 0 1 0 1]-2 - 0 1 0 1|-2 . 01 0 1]|-2
01 -1 3| 0 00 -1 2| 2 00 —1 2| 2
01 3 7| 4 01 3 7| 4 00 3 6| 6
1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
N 01 0 1]-2 N 01 0 1]-2 . 010 1]|-=2
0 01 —2|-2 0 01 —-2|-2 00 1 —2|-2
003 6| 6 0 0 0 12| 12 000 1] 1
11 1 1] 0 1 11 1] 0 111 0]-1
o 01 0 1|-2 . 01 0 o0f-3 o 01 0 0]|-3
001 0] O 00 1 0| O 001 0] O
000 1] 1 000 1| 1 0 00 1| 1
1 1 0 0]-1 1 00 0] 2
N 01 0 0|-3 . 01 0 0f-3
0 01 0| O 0010 0]
00 0 1] 1 000 1] 1
It follows that a =2, b= —3, ¢ =0, and d = 1. Thus p(x) = 23 — 3z + 2.



Alternative solution:  Since —2 and 1 are roots of the cubic polynomial p, it has the form
p(z) = (x4 2)(x — 1)(ax + b). Then p(—1) = 2a — 2b and p(2) = 8a + 4b. Therefore a and b are to be

chosen so that
2a — 2b =4, — a—b=2,
8a+4b =14 2a+b=1.
Solving this system of linear equations, we obtain ¢ = 1, b = —1. Thus

p@)=(x+2)(xz —1)(z—1) = (z+2)(2* — 2z +1) =2 — 3z + 2.

Problem 2 (25 pts.) Evaluate a determinant

1 1 1 1
C1 C C3 (4
2 2 2 2
G G G G
3 3 3 .3
€ G G G
For which values of parameters c1, ca, c3, ¢4 is this determinant equal to zero?

Let d denote the value of the determinant. To simplify the matrix, we subtract ¢; times the 3rd
row from the 4th row, then subtract ¢; times the 2nd row from the 3rd row, then subtract ¢; times
the 1st row from the 2nd row:

1 1 1 1 1 1 1 1
d Cl Cy C3 (4 C1 (6] C3 C4
=12 2 2 2|=1,2 2 2 2
€l G C3 (4 1 55 C3 Cy
cﬁ’f c% cg ci 0 c% — clc% cg — clc§ ci — cch
1 1 1 1 1 1 1

C1 C2 C3 Cq C2—C 3 —~C1 C4—C1

0 c% —cico c% —cic3 6421 —cic4

0 3 2 3 3 2

1
0
0 c% —ci1c2 c% —cic3 ci —cie4
2
Cy —cC1cy; 3 —c1c3 € —C1cg 0

3 —cic3 3 —ccd -t
The expansion by the first column yields

C2—C1 3 —C1 4 —C
d= C% — c1069 cg —cyc3 c?l — c1e4

3 —ci1c3 3 —ccd gy —cacd

Now there is a common factor in each column:

Cy — C1 C3 —C1 Ccy — C1 1 C3 —C1 Cy — C1
d= (C2 - 61)62 (63 - 61)63 (C4 - 61)64 = (C2 - Cl) C2 (63 - 61)63 (C4 - 61)64
(c2—c1)3 (e3—cr)e3 (ca— i) g (e3—c)dg (ca—c)e
1 1 Cq4 — C1 1 1 1
= (62 - Cl)(C3 - Cl) cy C3 (04 - 01)04 = (62 — Cl)(C3 - Cl)(C4 — Cl) C2 C3 (4
2 & (cx—c1)ck G G o



The latter determinant is evaluated using the same technique as before:

1 1 1 1 1 1 1 1 1
Cy C3 C4 | =|Cy C3 Cyq =10 C3 — C2 Cq — C2
c% c% ci 0 cg — CaC3 cZ — cacy 0 c% — cocy ci — Cacy

C3 —C2 Cq4 — C2 c3 — Co Cq4 — C2 1 cy — Co

= = = (3 —¢C
e —cacs A —cacy (c3 —ca)es (ca —c2)eq (c3 = c2) c3 (a4 —c2)cy
1 1
= (63 - 62)(64 - C2) == (63 — 62)(64 — 62)(64 — 63).
C3 C4

Thus
d = (C2 — Cl)(Cg — Cl)(C4 — Cl)(Cg — 62)(64 — 62)(64 — 63).

The determinant is equal to zero if and only if the numbers ¢y, ¢2, ¢3, ¢4 are not all distinct.

1
Problem 3 (20 pts.) Let A= |1
0

N = DN
)

(i) Find all eigenvalues of the matrix A.
The eigenvalues of A are roots of the characteristic equation det(A — AI) = 0. We obtain that

1—-x 2 0
det(A—X)=] 1 1-X 1 |[=@1-=X3=21-X)—-2(1-2))
0 21—\
=(1-N(1=-2N)=49)=1-0)(1-N=-2)(1-N)+2)=—A—1A+1)(XA-3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.

(i) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (z,y,2)! of A associated with an eigenvalue X is a nonzero solution of the
vector equation (A — AI)v = 0. To solve the equation, we apply row reduction to the matrix A — A\I.

First consider the case A = —1. The row reduction yields
2 20 110 110 110 1 0 -1
A+I=(1 2 1|—=[|1 2 1|—=101 1]—=101 1|—=1]101 1
0 2 2 0 2 2 0 2 2 0 00 00 O
Hence
1 0 -1 x 0 R
(A+I)iv=0 <+ 01 1 y| =10 = { +Z: ’
00 0/\z 0 yrE=
The general solution is * = s, y = —s, 2 = s, where s € R. In particular, vi = (1,—1,1)! is an

eigenvector of A associated with the eigenvalue —1.
Secondly, consider the case A = 1. The row reduction yields

0 2 0 1 01
A-I=11 0 1] —=10 2 0| —
0 2 0 0 2 0



1 01 T 0
(A-I)v=0 <— 010 y|] =10 = {
0 00 z 0

z+2=0,
y=0.

The general solution is # = —s, y = 0, z = s, where s € R. In particular, vo = (—1,0,1)! is an
eigenvector of A associated with the eigenvalue 1.
Finally, consider the case A = 3. The row reduction yields

2 2 0 1 -1 0 1 -1 0
A-3r= 1 -2 1|=(1 2 1]=]0 -1 1
0 2 -2 0 2 -2 0 2 -2
1 -1 0 1 -1 0 10 —1
=10 1 -1} —160 1 -1 =101 -1
0 2 -2 0 0 0 00 0
Hence
1 0 -1 x 0
(A-3)v=0 < [0 1 -1]|[y]=(0] <= {a:—z:O,
00 0/)\z 0 y—z=0

The general solution is x = s, y = s, 2 = s, where s € R. In particular, v3 = (1,1,1) is an eigenvector
of A associated with the eigenvalue 3.

(iii) Find all eigenvalues of the matrix A3.

Suppose that v is an eigenvector of the matrix A associated with an eigenvalue A, that is, v # 0
and Av = Av. Then
A%v = A(Av) = A(\WV) = A(Av) = A\(\wv) = Ay,

Adv = A(A%v) = ANPv) = N2 (Av) = X2 (wv) = M.

Therefore v is also an eigenvector of the matrix A% and the associated eigenvalue is A. We already
know that the matrix A has eigenvalues —1, 1, and 3. It follows that A% has eigenvalues —1, 1, and
27. Tt remains to notice that a 3 X 3 matrix can have at most 3 eigenvalues.
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Problem 4 (25 pts.) Let B = <1 4

C + +B.

). Find a matrix C such that C? = B2, but

First we diagonalize the matrix B. The characteristic polynomial is

det(B — AI) =

2—-A 3
1 4—-A

‘:(2—)\)(4—)\)—3:)\2—6)\+5:()\—1)()\—5).

It has roots 1 and 5.
An eigenvector v = (z,7)! of B associated with the eigenvalue 1 satisfies

(B-Tjv=0 <+ G §><;>=<8> e z+3y=0.

In particular, vi = (—3,1)! is one of the eigenvectors.



An eigenvector v = (z,7)! of B associated with the eigenvalue 5 satisfies

(B-5I)v=0 <= (‘i’ _?)(5):(8) = z-y=0.

In particular, vo = (1,1)! is one of the eigenvectors.
The vectors vi and vy form a basis for R2. It follows that B = UDU !, where

o (0). o= (1 )
p:<—(1) g)

The matrix P is chosen so that P2 = D? and P # +D. Since C?> = UPU'UPU~! = UP?U~! and
B? =UDU-'UDU~!' = UD?U~"!, we obtain that C? = B? and C # £B.
It remains to compute the matrix C:

1 -1
B (=3 1\ (=1 0\ /-3 1\ " [ 3 5\(/-3 1
c=vrvt = () (Gs) (1) =(43) (T )
(3 5\ L (1 -1\ _ 1/ 3 5\/-1 1) _ 1/2 18\ 1(1 9
- \-1 5) —4\-1 -3) 4\-1 5 1 3) 4\6 14) 2\3 7/}
Bonus Problem 5 (15 pts.) Let X be a square matrix that can be represented as a

block matrix A
(0 5):

where A and B are square matrices and O is a zero matrix. Prove that det(X) = det(A) det(B).

I c A0
v-(05) (6 7)

where I and I’ are the identity matrices of the same dimensions as A and B, respectively, and O’ is
the zero matrix of the same dimensions as C'. Multiplying Y and Z as block matrices, we obtain

_(IA+CO 10'+CI\ (A C\
YZ_<OA+BO OO’+BI’>_<O B>_X'

As a consequence, det(X) = det(Y)det(Z). It remains to show that det(Y) = det(B) and det(Z) =
det(A). The determinant of the matrix Y is easily expanded by the first column:

Now we let C = UPU™!, where

Consider block matrices

1 0 0 C11 Cln 1 0 . .
det(Y) = 00 ... 1 Ckl --- Ckn — 8 é Ck1 --- Ckn

0 0 ‘

o L B ; . ; B

00 ... 0

The new determinant can also be expanded by the first column. We keep expanding and eventually

obtain that det(Y) = det(B). Similarly, the equality det(Z) = det(A) is established by repeatedly
expanding the determinant of Z along the last row.



