
MATH 423–200/500 Spring 2012

Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Find a cubic polynomial p(x) such that p(−2) = 0, p(−1) = 4,
p(1) = 0, and p(2) = 4.

Let p(x) = a+bx+cx2+dx3. Then p(−2) = a−2b+4c−8d, p(−1) = a−b+c−d, p(1) = a+b+c+d,
and p(2) = a+ 2b+ 4c+ 8d. The coefficients a, b, c, and d are to be chosen so that















a− 2b+ 4c− 8d = 0,
a− b+ c− d = 4,
a+ b+ c+ d = 0,
a+ 2b+ 4c+ 8d = 4.

This is a system of linear equations. Let us convert its augmented matrix to reduced row echelon form
using elementary row operations:









1 −2 4 −8 0
1 −1 1 −1 4
1 1 1 1 0
1 2 4 8 4









→









1 1 1 1 0
1 −1 1 −1 4
1 −2 4 −8 0
1 2 4 8 4









→









1 1 1 1 0
0 −2 0 −2 4
1 −2 4 −8 0
1 2 4 8 4









→









1 1 1 1 0
0 −2 0 −2 4
0 −3 3 −9 0
1 2 4 8 4









→









1 1 1 1 0
0 −2 0 −2 4
0 −3 3 −9 0
0 1 3 7 4









→









1 1 1 1 0
0 1 0 1 −2
0 −3 3 −9 0
0 1 3 7 4









→









1 1 1 1 0
0 1 0 1 −2
0 1 −1 3 0
0 1 3 7 4









→









1 1 1 1 0
0 1 0 1 −2
0 0 −1 2 2
0 1 3 7 4









→









1 1 1 1 0
0 1 0 1 −2
0 0 −1 2 2
0 0 3 6 6









→









1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 3 6 6









→









1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 0 12 12









→









1 1 1 1 0
0 1 0 1 −2
0 0 1 −2 −2
0 0 0 1 1









→









1 1 1 1 0
0 1 0 1 −2
0 0 1 0 0
0 0 0 1 1









→









1 1 1 1 0
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1









→









1 1 1 0 −1
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1









→









1 1 0 0 −1
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1









→









1 0 0 0 2
0 1 0 0 −3
0 0 1 0 0
0 0 0 1 1









.

It follows that a = 2, b = −3, c = 0, and d = 1. Thus p(x) = x3 − 3x+ 2.
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Alternative solution: Since −2 and 1 are roots of the cubic polynomial p, it has the form
p(x) = (x+2)(x− 1)(ax+ b). Then p(−1) = 2a− 2b and p(2) = 8a+ 4b. Therefore a and b are to be
chosen so that

{

2a− 2b = 4,
8a+ 4b = 4

⇐⇒

{

a− b = 2,
2a+ b = 1.

Solving this system of linear equations, we obtain a = 1, b = −1. Thus

p(x) = (x+ 2)(x− 1)(x − 1) = (x+ 2)(x2 − 2x+ 1) = x3 − 3x+ 2.

Problem 2 (25 pts.) Evaluate a determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
c1 c2 c3 c4

c2
1

c2
2

c2
3

c2
4

c3
1

c3
2

c3
3

c3
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For which values of parameters c1, c2, c3, c4 is this determinant equal to zero?

Let d denote the value of the determinant. To simplify the matrix, we subtract c1 times the 3rd
row from the 4th row, then subtract c1 times the 2nd row from the 3rd row, then subtract c1 times
the 1st row from the 2nd row:

d =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
c1 c2 c3 c4

c2
1

c2
2

c2
3

c2
4

c3
1

c3
2

c3
3

c3
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
c1 c2 c3 c4

c2
1

c2
2

c2
3

c2
4

0 c3
2
− c1c

2
2

c3
3
− c1c

2
3

c3
4
− c1c

2
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
c1 c2 c3 c4

0 c2
2
− c1c2 c2

3
− c1c3 c2

4
− c1c4

0 c3
2
− c1c

2

2
c3
3
− c1c

2

3
c3
4
− c1c

2

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 c2 − c1 c3 − c1 c4 − c1

0 c2
2
− c1c2 c2

3
− c1c3 c2

4
− c1c4

0 c3
2
− c1c

2

2
c3
3
− c1c

2

3
c3
4
− c1c

2

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The expansion by the first column yields

d =

∣

∣

∣

∣

∣

∣

∣

c2 − c1 c3 − c1 c4 − c1

c2
2
− c1c2 c2

3
− c1c3 c2

4
− c1c4

c3
2
− c1c

2
2

c3
3
− c1c

2
3

c3
4
− c1c

2
4

∣

∣

∣

∣

∣

∣

∣

.

Now there is a common factor in each column:

d =

∣

∣

∣

∣

∣

∣

∣

c2 − c1 c3 − c1 c4 − c1

(c2 − c1)c2 (c3 − c1)c3 (c4 − c1)c4

(c2 − c1)c
2

2
(c3 − c1)c

2

3
(c4 − c1)c

2

4

∣

∣

∣

∣

∣

∣

∣

= (c2 − c1)

∣

∣

∣

∣

∣

∣

∣

1 c3 − c1 c4 − c1

c2 (c3 − c1)c3 (c4 − c1)c4

c2
2

(c3 − c1)c
2

3
(c4 − c1)c

2

4

∣

∣

∣

∣

∣

∣

∣

= (c2 − c1)(c3 − c1)

∣

∣

∣

∣

∣

∣

∣

1 1 c4 − c1

c2 c3 (c4 − c1)c4

c2
2

c2
3

(c4 − c1)c
2
4

∣

∣

∣

∣

∣

∣

∣

= (c2 − c1)(c3 − c1)(c4 − c1)

∣

∣

∣

∣

∣

∣

1 1 1
c2 c3 c4

c2
2

c2
3

c2
4

∣

∣

∣

∣

∣

∣

.
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The latter determinant is evaluated using the same technique as before:

∣

∣

∣

∣

∣

∣

1 1 1
c2 c3 c4

c2
2

c2
3

c2
4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
c2 c3 c4

0 c2
3
− c2c3 c2

4
− c2c4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
0 c3 − c2 c4 − c2

0 c2
3
− c2c3 c2

4
− c2c4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c3 − c2 c4 − c2

c2
3
− c2c3 c2

4
− c2c4

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

c3 − c2 c4 − c2
(c3 − c2)c3 (c4 − c2)c4

∣

∣

∣

∣

= (c3 − c2)

∣

∣

∣

∣

1 c4 − c2
c3 (c4 − c2)c4

∣

∣

∣

∣

= (c3 − c2)(c4 − c2)

∣

∣

∣

∣

1 1
c3 c4

∣

∣

∣

∣

= (c3 − c2)(c4 − c2)(c4 − c3).

Thus
d = (c2 − c1)(c3 − c1)(c4 − c1)(c3 − c2)(c4 − c2)(c4 − c3).

The determinant is equal to zero if and only if the numbers c1, c2, c3, c4 are not all distinct.

Problem 3 (20 pts.) Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation det(A− λI) = 0. We obtain that

det(A− λI) =

∣

∣

∣

∣

∣

∣

1− λ 2 0
1 1− λ 1
0 2 1− λ

∣

∣

∣

∣

∣

∣

= (1− λ)3 − 2(1 − λ)− 2(1 − λ)

= (1− λ)
(

(1− λ)2 − 4
)

= (1− λ)
(

(1− λ)− 2
)(

(1− λ) + 2
)

= −(λ− 1)(λ + 1)(λ − 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x, y, z)t of A associated with an eigenvalue λ is a nonzero solution of the
vector equation (A− λI)v = 0. To solve the equation, we apply row reduction to the matrix A− λI.

First consider the case λ = −1. The row reduction yields

A+ I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2



 →





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A+ I)v = 0 ⇐⇒





1 0 −1
0 1 1
0 0 0









x

y

z



 =





0
0
0



 ⇐⇒

{

x− z = 0,
y + z = 0.

The general solution is x = s, y = −s, z = s, where s ∈ R. In particular, v1 = (1,−1, 1)t is an
eigenvector of A associated with the eigenvalue −1.

Secondly, consider the case λ = 1. The row reduction yields

A− I =





0 2 0
1 0 1
0 2 0



 →





1 0 1
0 2 0
0 2 0



 →





1 0 1
0 1 0
0 2 0



 →





1 0 1
0 1 0
0 0 0



 .
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Hence

(A− I)v = 0 ⇐⇒





1 0 1
0 1 0
0 0 0









x

y

z



 =





0
0
0



 ⇐⇒

{

x+ z = 0,
y = 0.

The general solution is x = −s, y = 0, z = s, where s ∈ R. In particular, v2 = (−1, 0, 1)t is an
eigenvector of A associated with the eigenvalue 1.

Finally, consider the case λ = 3. The row reduction yields

A− 3I =





−2 2 0
1 −2 1
0 2 −2



 →





1 −1 0
1 −2 1
0 2 −2



 →





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A− 3I)v = 0 ⇐⇒





1 0 −1
0 1 −1
0 0 0









x

y

z



 =





0
0
0



 ⇐⇒

{

x− z = 0,
y − z = 0.

The general solution is x = s, y = s, z = s, where s ∈ R. In particular, v3 = (1, 1, 1)t is an eigenvector
of A associated with the eigenvalue 3.

(iii) Find all eigenvalues of the matrix A3.

Suppose that v is an eigenvector of the matrix A associated with an eigenvalue λ, that is, v 6= 0

and Av = λv. Then
A2

v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2
v,

A3
v = A(A2

v) = A(λ2
v) = λ2(Av) = λ2(λv) = λ3

v.

Therefore v is also an eigenvector of the matrix A3 and the associated eigenvalue is λ3. We already
know that the matrix A has eigenvalues −1, 1, and 3. It follows that A3 has eigenvalues −1, 1, and
27. It remains to notice that a 3× 3 matrix can have at most 3 eigenvalues.

Problem 4 (25 pts.) Let B =

(

2 3
1 4

)

. Find a matrix C such that C2 = B2, but

C 6= ±B.

First we diagonalize the matrix B. The characteristic polynomial is

det(B − λI) =

∣

∣

∣

∣

2− λ 3
1 4− λ

∣

∣

∣

∣

= (2− λ)(4− λ)− 3 = λ2 − 6λ+ 5 = (λ− 1)(λ − 5).

It has roots 1 and 5.
An eigenvector v = (x, y)t of B associated with the eigenvalue 1 satisfies

(B − I)v = 0 ⇐⇒

(

1 3
1 3

)(

x

y

)

=

(

0
0

)

⇐⇒ x+ 3y = 0.

In particular, v1 = (−3, 1)t is one of the eigenvectors.

4



An eigenvector v = (x, y)t of B associated with the eigenvalue 5 satisfies

(B − 5I)v = 0 ⇐⇒

(

−3 3
1 −1

)(

x

y

)

=

(

0
0

)

⇐⇒ x− y = 0.

In particular, v2 = (1, 1)t is one of the eigenvectors.
The vectors v1 and v2 form a basis for R2. It follows that B = UDU−1, where

D =

(

1 0
0 5

)

, U =

(

−3 1
1 1

)

.

Now we let C = UPU−1, where

P =

(

−1 0
0 5

)

.

The matrix P is chosen so that P 2 = D2 and P 6= ±D. Since C2 = UPU−1UPU−1 = UP 2U−1 and
B2 = UDU−1UDU−1 = UD2U−1, we obtain that C2 = B2 and C 6= ±B.

It remains to compute the matrix C:

C = UPU−1 =

(

−3 1
1 1

)(

−1 0
0 5

)(

−3 1
1 1

)

−1

=

(

3 5
−1 5

)(

−3 1
1 1

)

−1

=

(

3 5
−1 5

)

1

−4

(

1 −1
−1 −3

)

=
1

4

(

3 5
−1 5

)(

−1 1
1 3

)

=
1

4

(

2 18
6 14

)

=
1

2

(

1 9
3 7

)

.

Bonus Problem 5 (15 pts.) Let X be a square matrix that can be represented as a
block matrix

X =

(

A C

O B

)

,

where A and B are square matrices and O is a zero matrix. Prove that det(X) = det(A) det(B).

Consider block matrices

Y =

(

I C

O B

)

, Z =

(

A O′

O I ′

)

,

where I and I ′ are the identity matrices of the same dimensions as A and B, respectively, and O′ is
the zero matrix of the same dimensions as C. Multiplying Y and Z as block matrices, we obtain

Y Z =

(

IA+ CO IO′ + CI ′

OA+BO OO′ +BI ′

)

=

(

A C

O B

)

= X.

As a consequence, det(X) = det(Y ) det(Z). It remains to show that det(Y ) = det(B) and det(Z) =
det(A). The determinant of the matrix Y is easily expanded by the first column:

det(Y ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 c11 . . . c1n
0 1 . . . 0 c21 . . . c2n
...

...
. . .

...
...

. . .
...

0 0 . . . 1 ck1 . . . ckn
0 0 . . . 0
...

...
. . .

... B

0 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 0 c21 . . . c2n
...

. . .
...

...
. . .

...
0 . . . 1 ck1 . . . ckn
0 . . . 0
...

. . .
... B

0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The new determinant can also be expanded by the first column. We keep expanding and eventually
obtain that det(Y ) = det(B). Similarly, the equality det(Z) = det(A) is established by repeatedly
expanding the determinant of Z along the last row.
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