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Lecture 3:

Prime factorisation (continued).
Congruence classes.

Modular arithmetic.



Unique prime factorisation

A positive integer p is prime if it has exactly two

positive divisors, namely, 1 and p.

Prime factorisation of a positive integer n ≥ 2 is
a decomposition of n into a product of primes.

Theorem Any positive integer n ≥ 2 admits a
prime factorisation. This factorisation is unique up
to rearranging the factors.

The existence of the factorisation is derived from a simple fact:
if p1p2 . . . pk is a prime factorisation of n and q1q2 . . . ql is a
prime factorisation of m, then p1p2 . . . pkq1q2 . . . ql is a prime
factorisation of nm. The uniqueness is derived from another
observation: if a prime number p divides a product of primes
p1p2 . . . pk then one of the primes p1, . . . , pk coincides with p.



Coprime numbers

Positive integers a and b are relatively prime (or coprime) if
gcd(a, b) = 1.

Theorem Suppose that a and b are coprime integers. Then
(i) a|bc implies a|c;
(ii) a|c and b|c imply ab|c.

Idea of the proof: Since gcd(a, b) = 1, there are integers m

and n such that ma + nb = 1. Then c = mac + nbc.

Corollary 1 If a prime number p divides the product
a1a2 . . . an, then p divides one of the integers a1, . . . , an.

Corollary 2 If an integer a is divisible by pairwise coprime
integers b1, b2, . . . , bn, then a is divisible by the product
b1b2 . . . bn.



Let a = pn1

1
pn2

2
. . . pnk

k
and b = pm1

1
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2
. . . pmk

k
,

where p1, p2, . . . , pk are distinct primes and ni , mi

are nonnegative integers.

Theorem (i) a divides b if and only if ni ≤ mi for
i = 1, 2, . . . , k .

(ii) gcd(a, b) = ps1

1
ps2

2
. . . psk

k
, where si = min(ni , mi).

(iii) lcm(a, b) = pt1

1
pt2

2
. . . ptk

k
, where ti = max(ni , mi).

Here lcm(a, b) denotes the least common
multiple of a and b, that is, the smallest positive

integer divisible by both a and b.



Fermat and Mersenne primes

Proposition For any integer k ≥ 2 and any x , y ∈ R,

xk − y k = (x − y)(xk−1 + xk−2y + · · · + xy k−2 + y k−1).

If, in addition, k is odd, then

xk + y k = (x + y)(xk−1 − xk−2y + · · · − xy k−2 + y k−1).

Corollary 1 (Mersenne) The number 2n − 1 is composite
whenever n is composite.

(Hint: use the first formula with x = 2n/k , y = 1, and k a
prime divisor of n.)

Corollary 2 (Fermat) Let n ≥ 2 be an integer. Then the
number 2n + 1 is composite whenever n is not a power of 2.

(Hint: use the second formula with x = 2n/k , y = 1, and k an
odd prime divisor of n.)

Mersenne primes are primes of the form 2p − 1, where p is
prime. Fermat primes are primes of the form 22

n

+ 1.
Only finitely many Fermat and Mersenne primes are known.



Congruences

Let n be a postive integer. The integers a and b are called
congruent modulo n if they have the same remainder when
divided by n. An equivalent condition is that n divides the
difference a − b.

Notation. a ≡ b mod n or a ≡ b ( mod n).

Proposition If a ≡ b mod n then for any integer c,
(i) a + cn ≡ b mod n;
(ii) a + c ≡ b + c mod n;
(iii) ac ≡ bc mod n.



Modular arithmetic

Given an integer a, the congruence class of a

modulo n is the set of all integers congruent to a

modulo n.

Notation. [a]n or simply [a].

Also, a and a + nZ.

For any integers a and b, we let

[a]n + [b]n = [a + b]n,

[a]n × [b]n = [ab]n,


