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Lecture 14:
Further examples of groups.

Semigroups.



Abstract groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Examples

• Real numbers R with addition.

• Nonzero real numbers R with multiplication.

• Integers Z with addition.

• Congruence classes modulo n with addition.

• Invertible congruence classes modulo n with
multiplication.

• Symmetric group S(n): permutations of
{1, 2, . . . , n} with composition.

• Alternating group A(n): even permutations of
{1, 2, . . . , n} with composition.

• Any vector space V with addition.



Matrix groups

A group is called linear if its elements are n×n matrices and
the group operation is matrix multiplication.

• General linear group GL(n, R) consists of all n×n

matrices that are invertible (i.e., with nonzero determinant).

The identity element is I = diag(1, 1, . . . , 1).

• Special linear group SL(n, R) consists of all n×n

matrices with determinant 1.

Closed under multiplication since det(AB) = det(A) det(B).
Also, det(A−1) = (det(A))−1.

• Orthogonal group O(n, R) consists of all orthogonal
n×n matrices (ATA = AAT = I ).

• Special orthogonal group SO(n, R) consists of all
orthogonal n×n matrices with determinant 1.

SO(n, R) = O(n, R) ∩ SL(n, R).



Groups of symmetries

A transformation group is a group of bijective
transformations of a set X with the operation of
composition.

Given a geometric figure F ⊂ R
n, a symmetry of

F is a motion of R
n that preserves F . All

symmetries of F form a transformation group.

The dihedral group D(n) is the group of
symmetries of a regular n-gon. It consists of 2n

elements: n reflections, n−1 rotations by angles
2πk/n, k = 1, 2, . . . , n−1, and the identity
function.



Basic properties of groups

• The identity element is unique.

• The inverse element is unique.

• (ab)−1 = b−1a−1.

• (a1a2 . . . an)
−1 = a−1

n
. . . a−1

2
a−1

1
.

• Cancellation properties: ab = ac =⇒ b = c

and ba = ca =⇒ b = c for all a, b, c ∈ G .

Indeed, ab = ac =⇒ a−1(ab) = a−1(ac)
=⇒ (a−1a)b = (a−1a)c =⇒ eb = ec =⇒ b = c .
Similarly, ba = ca =⇒ b = c .

• If ba = a or ab = a for some a ∈ G , then b

is the identity element.

• gh = e ⇐⇒ hg = e ⇐⇒ h = g−1.



Cayley table

A binary operation on a finite set can be given by a Cayley
table (i.e., “multiplication” table):

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

The Cayley table is convenient to check commutativity of the
operation (the table should be symmetric relative to the
diagonal), cancellation properties (left cancellation holds if
each row contains all elements, right cancellation holds if each
column contains all elements), existence of the identity
element, and existence of the inverse.

However this table is not convenient to check associativity of
the operation.



Problem. The following is a partially completed Cayley table
for a certain commutative group:

∗ a b c d

a b c

b c

c a

d d

Complete the table.

Solution:

∗ a b c d

a b a d c

b a b c d

c d c b a

d c d a b



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Additional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Given a set X , all functions f : X → X with composition
(monoid).

• All n×n matrices with multiplication (monoid).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation A ∗ B = A ∪ B

(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite
words in X with the operation of concatenation.
If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.

• The set S(X ) of all automaton transformations
over an alphabet X with composition.
Any transducer automaton with the input/output alphabet X

generates a transformation f : X ∗ → X ∗ by the rule
f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata is also generated by a finite state automaton.

Theorem Any finite semigroup with cancellation is
actually a group.


