MATH 433
Applied Algebra

Lecture 19:
Alternating group.
Abstract groups.



Sign of a permutation

Theorem 1 (i) Any permutation is a product of transpositions.

. _ I / o
(i) f r=mnm... 7y =775...7,, where 7,7/ are

transpositions, then the numbers n and m are of the same parity.

A permutation 7 is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions.

The sign sgn(7) of the permutation 7 is defined to be +1 if
7 is even, and —1 if 7 is odd.

Theorem 2 (i) sgn(mo) = sgn(w)sgn(o) for any 7,0 € S(n).
(i) sgn(7~t) = sgn(n) for any 7 € S(n).

(iii) sgn(id) = 1.

(iv) sgn(7) = —1 for any transposition .

(v) sgn(o) = (=1)""1 for any cycle o of length r.



Alternating group

Given an integer n > 2, the alternating group on n symbols,
denoted A, or A(n), is the set of all even permutations in the
symmetric group S(n).

Theorem (i) For any two permutations 7,0 € A(n), the
product 7o is also in A(n).

(ii) The identity function id is in A(n).

(iii) For any permutation 7€ A(n), the inverse 71 is in A(n).

In other words, the product of even permutations is even, the
identity function is an even permutation, and the inverse of an
even permutation is even.

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider the function F : A(n) — S(n) \ A(n) given
by F(m) = (1 2)m. One can observe that F is bijective. It
follows that the sets A(n) and S(n) \ A(n) have the same
number of elements.



Examples. e The alternating group A(3) has 3
elements: the identity function and two cycles of
length 3, (123) and (13 2).

e The alternating group A(4) has 12 elements of
the following cycle shapes: id, (12 3), and
(12)(3 4).

e The alternating group A(5) has 60 elements of
the following cycle shapes: id, (1 2 3), (1 2)(3 4),
and (12345).



Abstract groups

Definition. A group is a set G, together with a binary
operation x, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g* h is an element of G;
(G2: associativity)

(gxh)xk=g=x(hxk) forall g,h ke G,

(G3: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall ge G;

(G4: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg=ce.

The group (G, ) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) gxh=hxg forall g, heG.



Basic examples. e Real numbers R with addition.

(Gl)x,ye R = x+yeR

(G2) (x+y)+z=x+(y+2)

(G3) the identity elementis0as x+0=0+x = x
(G4) the inverse of x is —x as x+ (—x)=(—x)+x=0
(GB) x+y=y+x

e Nonzero real numbers R\ {0} with
multiplication.

(Gl) x#0 and y 240 — xy #0

(G2) (xy)z = x(yz)

(G3) the identity element is 1 as x1 = 1x = x
(G4) the inverse of x is x 1 as xx 1 =x"x=1
(G5) xy = yx



The two basic examples give rise to two kinds of notation for a
general group (G, *).

Multiplicative notation: We think of the group operation x
as some kind of multiplication, namely,

e ax b is denoted ab,

e the identity element is denoted 1,

e the inverse of g is denoted g .

Additive notation: We think of the group operation x as
some kind of addition, namely,

e ax b is denoted a-+ b,
e the identity element is denoted 0,
e the inverse of g is denoted —g.

Remark. Default notation is multiplicative (but the identity
element may be denoted e or id). The additive notation is
used only for commutative groups.



More examples

e Integers Z with addition.

(Gl)a,beZ = a+beZ

(G2) (a+b)+c=a+(b+¢)

(G3) the identity elementis0as a+0=0+a=a and
0€Z

(G4) the inverse of a€ Z is —a as
at+(—a)=(-a)+a=0 and —a€Z
(G5)a+b=b+a



More examples

e The set Z, of congruence classes modulo n with
addition.

(G1) [a],[b] € Z, = [a] + [b] =[a+ b] € Z,

(G2) ([a] + [b]) + [c] = [a+ b+ c] = [a] + ([6] + [c])

(G3) the identity element is [0] as [a] 4+ [0] = [0] + [a] = [a]
(G4) the inverse of [a] is [—a] as [a] +[—a] = [—a] + [a] = [0]
(G5) [a] + [b] = [a + b] = [b] + [4]



More examples

e The set G, of invertible congruence classes
modulo n with multiplication.

A congruence class [a], € Z, belongs to G, if
gcd(a, n) = 1.
(G1) [a],, [b]n € G = gcd(a,n) = ged(b,n) =1
— gcd(ab,n) =1 = [a],[b], = [ab], € G,
G2) ([al[b])]c] = [abe] = [al([p][c])
3) the identity element is [1] as [a][1] = [1][a] = [4]
4) the inverse of [a] is [a]™! by definition of [a]~!
5) [a][b] = [ab] = [b][a]
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More examples

e Permutations S(n) with composition
(= multiplication).

(G1) 7 and o are bijective functions from the set {1,2,..., n}
to itself = sois mo

(G2) (wo)7T and w(oT) applied to k, 1 < k < n, both yield
m(o(7(k)))-

(G3) the identity element is id as 7id =id7 =7

(G4) the inverse of 7 is w7 by definition of the inverse
function

(G5) fails for n >3 as (12)(23) = (12 3) while

(23)(12) =(132).



More examples

e Even permutations A(n) with multiplication.

(G1) 7 and o are even permutations = 7o is even

(G2) (wo)T = w(oT) holds in A(n) as it holds in a larger set
5(n)
(G3) the identity element from S(n), which is id, is an even

permutation, hence it is the identity element in A(n) as well

(G4) 7 is an even permutation = 7! is also even

(Gb) fails for n >4 as (123)(234)=(12)(34) while
(234)(123)=(13)(24).



Basic properties of groups

e The identity element is unique.

Assume that e; and e, are identity elements. Then
€1 = €16 = 6.

e The inverse element is unique.

Assume that h; and h, are inverses of an element g. Then
h1 = hle = hl(ghz) = (hlg)hz = eh2 = h2.

e (ab)t=btal,

We need to show that (ab)(b~ta™!) = (b ta7!)(a ) =e.
Indeed, (ab)(b~'a™') = ((ab)b~')a~ :( (bb71))a™

= (ae)a~! =aa~! =e. Similarly, (b 1a- )( b) =
b'(a7(ab)) = b7'((a7ta)b) = b~'(eb) = b b =e.

o (a1ay...a,) t=a;l. . .a,'a; "



