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Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Additional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Given a set X , all functions f : X → X with composition
(monoid).

• All n×n matrices with multiplication (monoid).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation A ∗ B = A ∪ B

(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite

words in X with the operation of concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.

• The set S(X ) of all automaton transformations

over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X
generates a transformation f : X ∗ → X ∗ by the rule
f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata is also generated by a finite state automaton.



Theorem Any finite semigroup with cancellation is

actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an Abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all x , y ∈ R , x + y is an element of R ;
(R2) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(R3) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(R4) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(R5) x + y = y + x for all x , y ∈ R ;
(R6) for all x , y ∈ R , xy is an element of R ;
(R7) (xy)z = x(yz) for all x , y , z ∈ R ;
(R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Examples of rings

In most examples, addition and multiplication are naturally
defined and verification of the axioms is straightforward.

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• R[X ]: polynomials in variable X with real coefficients.

• R(X ): rational functions in variable X with real coefficients.

• All functions f : R → R.

• Zero ring: any additive Abelian group with trivial
multiplication: xy = 0 for all x and y .

• Trivial ring {0}.



Zero-divisors

Theorem Let R be a ring. Then x0 = 0x = 0 for all x ∈ R .

Proof: Let y = x0. Then y + y = x0 + x0 = x(0 + 0)
= x0 = y . It follows that (−y ) + y + y = (−y ) + y , hence
y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a left zero-divisor if
xy = 0 for another nonzero element y ∈ R . The element y is
called a right zero-divisor.

Examples. • In the ring Z6, the zero-divisors are congruence
classes [2]6, [3]6, and [4]6, as [2]6[3]6 = [4]6[3]6 = [0]6.

• In the ring Mn(R), the zero-divisors (both left and right)
are nonzero matrices with zero determinant. For instance,
(

1 0
0 0

)(

0 0
0 1

)

=

(

0 0
0 0

)

,

(

0 1
0 0

)2

=

(

0 0
0 0

)

.

• In any zero ring, all nonzero elements are zero-divisors.


