MATH 433
Applied Algebra

Lecture 22:
Semigroups.
Rings.



Groups

Definition. A group is a set G, together with a binary
operation x, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g* h is an element of G;
(G2: associativity)

(gxh)xk=g=x(hxk) forall g,h ke G,

(G3: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall ge G;

(G4: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg=ce.

The group (G, ) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) gxh=hxg forall g, heG.



Semigroups

Definition. A semigroup is a nonempty set S, together with
a binary operation *, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S, g * h is an element of S;

(S2: associativity)
(gxh)xk=g=x(hxk) forall g,h keS.

The semigroup (S, *) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e € S
such that exg=gxe=g forall ge€S.
Additional useful properties of semigroups:

(S4: cancellation) g h; = gx*hy, implies h; = h, and
hi xg = hy x g implies hy = hy, forall g,hy,h, €8S.
(S5: commutativity) gxh=hxg forall g,heS.



Examples of semigroups

e Real numbers R with multiplication (commutative monoid).

e Positive integers with addition (commutative semigroup
with cancellation).

e Positive integers with multiplication (commutative monoid
with cancellation).

e Given a set X, all functions f : X — X with composition
(monoid).
e All nxn matrices with multiplication (monoid).

e Invertible nxn matrices with integer entries, with
multiplication (monoid with cancellation).

e All subsets of a set X with the operation Ax B=AUB
(commutative monoid).

e Positive integers with the operation a x b = max(a, b)
(commutative monoid).



Examples of semigroups

e Given a finite alphabet X, the set X* of all finite
words in X with the operation of concatenation.

If Wi = aiap...ap and Wy = b1b2 R bk, then
WiWs = a1ds...apbibs ... br. This is a monoid with
cancellation. The identity element is the empty word.

e The set S(X) of all automaton transformations
over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X
generates a transformation f : X* — X* by the rule

f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata is also generated by a finite state automaton.



Theorem Any finite semigroup with cancellation is
actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s € S there exists an

integer k > 2 such that sX =s.

Proof: Since S is finite, the sequence s, s?, s, ... contains

repetitions, i.e., sk =s™ forsome k>m>1. If m=1
then we are done. If m > 1 then s 1lsk—m+l = gm-lg
which implies sk=™+1 = 5.

Proof of the theorem: Take any s € S. By Lemma, we have
sk = s for some k > 2. Then e = s~ is the identity
element. Indeed, for any g € S we have sg = sg or,
equivalently, s(eg) = sg. After cancellation, eg = g.
Similarly, ge = g for all g € S. Finally, for any g € S there
is n>2 such that g" = g = ge. Then g"! = e, which
implies that g" 2 = g~ 1.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an Abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(R1) for all x,y € R, x+y is an element of R;

(R2) (x+y)+z=x+(y+2z) forall x,y,z€R;

(R3) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€ R;

(R4) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(R5) x+y=y+x forall x,y €R;

(R6) for all x,y € R, xy is an element of R;

(R7) (xy)z = x(yz) forall x,y,z € R;

(R8) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



Examples of rings

In most examples, addition and multiplication are naturally
defined and verification of the axioms is straightforward.

e Real numbers R.

e Integers Z.

e 27, even integers.

e 7Z,: congruence classes modulo n.

o M, (R): all nxn matrices with real entries.

e M,(Z): all nxn matrices with integer entries.

e R[X]: polynomials in variable X with real coefficients.

e R(X): rational functions in variable X with real coefficients.
e All functions f: R — R.

e Zero ring: any additive Abelian group with trivial
multiplication: xy =0 for all x and y.

e Trivial ring {0}.



Zero-divisors

Theorem Let R be aring. Then x0 =0x =0 for all x € R.

Proof: Let y =x0. Then y+y =x0+ x0 = x(0+0)
=x0=y. It follows that (—y)+y+y = (—y)+y, hence
y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a left zero-divisor if
xy = 0 for another nonzero element y € R. The element y is
called a right zero-divisor.

Examples. e In the ring Zg, the zero-divisors are congruence
classes [2]g, [3]6, and [4]6, as [2]6[3]6 = [4]6[3]6 = [O]s.

e In the ring M ,(R), the zero-divisors (both left and right)
are nonzero matrices with zero determinant. For instance,

(6 0)(69)- (o) (30)-(5)

e In any zero ring, all nonzero elements are zero-divisors.



