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Lecture 24:
More on algebraic structures.



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an Abelian group under addition,
• F \ {0} is an Abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with identity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Basic properties of fields

• The zero 0 and the unity 1 are unique.

• For any a ∈ F , the negative −a is unique.

• For any a 6= 0, the inverse a−1 is unique.

• −(−a) = a for all a ∈ F .

• 0 · a = 0 for any a ∈ F .

• (−1) · a = −a for any a ∈ F .

• (−1) · (−1) = 1.

• ab = 0 implies that a = 0 or b = 0.

• (a − b)c = ac − bc for all a, b, c ∈ F .



Vector space over a field

Definition. Given a field F , a vector space V over F is an
additive Abelian group endowed with an action of F called
scalar multiplication or scaling.

An action of F on V is an operation that takes elements
λ ∈ F and v ∈ V and gives an element, denoted λv , of V .

The scalar multiplication is to satisfy the following axioms:

(V1) for all v ∈ V and λ ∈ F , λv is an element of V ;

(V2) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;

(V3) 1v = v for all v ∈ V ;

(V4) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;

(V5) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F .



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate

vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with
entries in F .

• The space F [X ] of polynomials
p(x) = a0+ a1X + · · ·+ anX

n with coefficients in F .

• Any field F ′ that is an extension of F (i.e.,

F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,

C is a vector space over R and over Q, R is a
vector space over Q.



Characteristic of a field

A field F is said to be of nonzero characteristic if
1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n times

= 0 for some positive integer n. The smallest

integer with this property is the characteristic of F .
Otherwise the field F has characteristic 0.

The fields Q, R, C have characteristic 0.
The field Zp (p prime) has characteristic p.

Since (1 + · · ·+ 1
︸ ︷︷ ︸

n times

)(1 + · · ·+ 1
︸ ︷︷ ︸

m times

) = 1 + · · ·+ 1
︸ ︷︷ ︸

nm times

, any nonzero

characteristic is prime.

Any field of characteristic 0 has a unique structure of the
vector space over Q. Any field of characteristic p > 0 has a
unique structure of the vector space over Zp. It follows that
any finite field F of charasteristic p has pn elements (where n

is the dimension of F as a vector space over Zp).



Quadratic extension

Consider the set Z[
√
2] of all numbers of the form a + b

√
2,

where a, b ∈ Z. This set is closed under addition,
subtraction, and multiplication:

(a + b
√
2) + (c + d

√
2) = (a + c) + (b + d)

√
2,

(a + b
√
2)− (c + d

√
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√
2,

(a + b
√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2.

It follows that Z[
√
2] is a ring. Actually, it is an integral

domain. The quotient field of Z[
√
2] is Q(

√
2), the set of

all fractions a+b
√
2

c+d
√
2
, where a, b, c, d ∈ Q and |c|+ |d | 6= 0.

In fact, Q(
√
2) = Q[

√
2]:

1

c + d
√
2
=
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√
2

(c + d
√
2)(c − d

√
2)

=
c

c2 − 2d2
− d
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√
2.

The field Q[
√
2] is a quadratic extension of the field Q.

Similarly, the field C is a quadratic extension of R, C=R[
√
−1].



Algebra over a field

Definition. An algebra A over a field F (or F -algebra) is a
vector space with a multiplication which is a bilinear operation
on A. That is, the product xy is both a linear function of x

and a linear function of y .

To be precise, the following axioms are to be satisfied:

(A1) for all x , y ∈ A, the product xy is an element of A;
(A2) x(y+z) = xy+xz and (y+z)x = yx+zx for x , y , z ∈A;
(A3) (λx)y = λ(xy ) = x(λy ) for all x , y ∈ A and λ ∈ F .

An F -algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F -algebra A is a Lie algebra if the multiplication (usually
denoted [x , y ] and called Lie bracket in this case) satisfies:

(Antisymmetry): [x , y ] = −[y , x ] for all x , y ∈ A;
(Jacobi’s identity): [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0
for all x , y , z ∈ A.



Examples of associative algebras:

• The space Mn(F ) of n×n matrices with entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · ·+ anX

n with coefficients in F .

• The space of all functions f : S → F on a set S taking
values in a field F .

• Any field F ′ that is an extension of a field F is an
associative algebra over F .

Examples of Lie algebras:

• R3 with the cross product is a Lie algebra over R.

• Any associative algebra A with a Lie bracket (called the
commutator) defined by [x , y ] = xy − yx .


