MATH 433
Applied Algebra

Lecture 26:
Order of an element in a group.
Subgroups.



Groups

Definition. A group is a set G, together with a binary
operation x, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g* h is an element of G;
(G2: associativity)

(gxh)xk=g=x(hxk) forall g,h ke G,

(G3: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall ge G;

(G4: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg=ce.

The group (G, ) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) gxh=hxg forall g, heG.



Basic properties of groups

e The identity element is unique.

e The inverse element is unique.

e (g})1=g. Inother words, h =g if and
only if g =h"1.

° (gh)_l = hlg~L.

e (a&...&) =g" &'t

e Cancellation properties: gh; = gh, —
hy = h, and hig = hhg = hy = h, for all

g, hi,hh€qG.

Indeed, ghy = ghy = g '(gh1) = g *(gh2)
— (g_lg)hl = (g_lg)h2 — eh1 = eh2 — hl = h2.
SimiIarIy, hlg = h2g = h; = hy.



Equations in groups

Theorem Let G be a group. For any a, b, c € G,
e the equation ax = b has a unique solution

x =alb:

e the equation ya = b has a unique solution

y =bat,

e the equation azc = b has a unique solution
z=albc L.

Problem. Solve an equation in the group S(5):
(124)(35)1(2345)=(15).

Solution: 7= ((12 4)(3 5))_1(1 5)(2 3 4 5)7!
=(35)1(124)'(15)(2345)"
=(53)(421)(15)(5432)=(13)(245).



Powers of an element
Let g be an element of a group G. The positive powers of g
are defined inductively:
gl =g and gk'l
The negative powers of g are defined as the positive powers of

its inverse: g~k = (g71)* for every positive integer k.
Finally, we set g% = e.

=g - gk for every integer k > 1.

Theorem Let g be an element of a group G and r,s € Z.
Then

(I) grgs — gr—l—s,

(i) (") = g™,

(i) () =&

Idea of the proof: First one proves the theorem for positive
r,s by induction (induction on r for (i) and (iii), induction on
s for (i) ). Then the general case is reduced to the case of
positive r,s.



Order of an element

Let g be an element of a group G. We say that g has finite
order if g” = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).

Otherwise g is said to have the infinite order, o(g) = cc.

Theorem If G is a finite group, then every element of G has
finite order.

Proof: Let g € G and consider the list of powers:

g,82%, g%, .... Since all elements in this list belong to the
finite set G, there must be repetitions within the list. Assume
that g" = g° forsome 0 <r <s. Then gle=g"g*"

= g° " = e due to the cancellation property.



Theorem 1 Let G be a group and g € G be an element of
finite order n. Then g" = g°® if and only if r = s mod n.
In particular, g” = e if and only if the order n divides r.

Theorem 2 Let G be a group and g € G be an element of
infinite order. Then g" = g° whenever r # s.

Theorem 3 Let g and h be two commuting elements of a
group G: gh = hg. Then

(i) the powers g" and h* commute for all r;s € Z,

(ii) (gh)" = g"h" for all r € Z.

Theorem 4 Let G be a group and g, h € G be two
commuting elements of finite order. Then gh also has a
finite order. Moreover, o(gh) divides lem(o(g), o(h)).



Examples

e G=5(10), g=(123456), h=(78910).

g and h are disjoint cycles, in particular, gh = hg.
We have o(g) =6, o(h) =4, and
o(gh) = lem(o(g), o(h)) = 12.

e G=5(6), g=(123456),
h=(135)(246).

Notice that h = g2. Hence gh= hg = g*> = (14)(2 5)(3 6).
We have o(g) =6, o(h) =3, and
o(gh) =2 < lem(o(g), o(h)).

e G=5(5), g=(123), h=(345).

gh=(12345), hg=(12453)+#gh.
We have o(g) = o(h) =3 and o(gh) = o(hg) = 5.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and
define an operation on H by restricting the group operation of
G. Then the following are equivalent:

(i) H is a subgroup of G;

(ii) H is closed under the operation and under taking the
inverse, thatis, g,he H = ghe€ H and

gcH = glcH,

(i) g, he H = gh ' e H.

Corollary If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G; (ii) for
any g € H the inverse g~ ! taken in H is the same as the
inverse taken in G.



Examples of subgroups: e (Z,+) is a subgroup of (R,+).
e (Q\ {0}, x) is a subgroup of (R\ {0}, x).

e The alternating group A(n) is a subgroup of the symmetric
group S(n).

e The special linear group SL(n,R) is a subgroup of the
general linear group GL(n,R).

e Any group G is a subgroup of itself.

e If e is the identity element of a group G, then {e} is the
trivial subgroup of G.

Counterexamples: o (R\ {0}, x) is not a subgroup of
(R, +) since the operations do not agree.

e (Z,,+) is not a subgroup of (Z,+) since Z, is not a
subset of Z (although every element of Z, is a subset of Z).
e (Z \ {0}, x) is not a subgroup of (R\ {0}, x) since

(Z \ {0}, x) is not a group.



