MATH 433
Applied Algebra

Lecture 27:
Subgroups (continued).
Cyclic groups.



Order of an element in a group

Let g be an element of a group G. We say that g has finite
order if g” = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).
Otherwise g is said to have the infinite order, o(g) = cc.

Theorem 1 (i) If the order o(g) is finite, then g" = g° if
and only if r = s mod o(g). In particular, g" = e if and
only if o(g) divides r.

(i) If the order o(g) infinite, then g" # g° whenever r # s.

Theorem 2 If G is a finite group, then every element of G
has finite order.

Theorem 3 Let G be a group and g, h € G be two
commuting elements of finite order. Then gh also has a
finite order. Moreover, o(gh) divides lem(o(g), o(h)).



Theorem 4 o(g™!) = o(g) forall g€ G.

Proof: (g')" =g " =(g")~! for any integer n > 1. Since
-1

e ' = e, it follows that (g~')” = e if and only if g" =e.
Definition. Given gy, g8 € G, we say that the element gy is
conjugate to g if g3 = hgoh™! for some h€ G. The
conjugacy is an equivalence relation on the group G.

Theorem 5 Conjugate elements have the same order.

Proof: Let g1, € G and suppose g is conjugate to g»,
g1 = hgoh™! for some h€ G. Then

gi = hgoh™thgoh™' = hgZh™'. By induction, gf' = hgyh™?
forall n>1. If gf =e then g = heh™* = hh™! =e.

It follows that o(g1) < o(g»). Since g» is conjugate to g as
well, we also have o(g) < o(g1). Thus o(g1) = o(g).

Corollary o(gh) = o(hg) for all g,h € G.
Proof: The element gh is conjugate to hg, gh = g(hg)g".



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and
define an operation on H by restricting the group operation of
G. Then the following are equivalent:

(i) H is a subgroup of G;

(ii) H is closed under the operation and under taking the
inverse, thatis, g,he H — ghe€ H and

gEH = gleH,

(iii)) g,he H = gh ' e H.

Corollary If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G;

(i) for any g € H the inverse g~! taken in H is the same as
the inverse taken in G.



Generators of a group

Theorem 1 Let H; and H, be subgroups of a group G.
Then the intersection H; N H, is also a subgroup of G.

Proof: g.he HHNH, = g,he H; and g,he H,
— gh_l € H; and gh_l e H, — gh_l € H;y N H,.

Theorem 2 Let H,, o € A be a collection of subgroups of a
group G (where the index set A may be infinite). Then the
intersection (), H, is also a subgroup of G.

Let S be a nonempty subset of a group G. The group
generated by S, denoted (S), is the smallest subgroup of G
that contains the set S. The elements of the set S are called
generators of the group (S).

Theorem 3 (i) The group (S) is the intersection of all
subgroups of G that contain the set S.

(ii) The group (S) consists of all elements of the form
g18> - - - 8k, Where each g; is either a generator s € S or the
inverse s~ of a generator.



Theorem The symmetric group S(n) is generated by two
permutations: 7= (12) and 7=(123 ... n).

Proof: Let H = (r,m). We have to show that H = 5(n).

First we obtain that « = 77 = (23 ... n). Then we observe
that (1 2)0~! = (¢(1) o(2)) for any permutation o.

In particular, (1 k) = a*2(12)(a*2)7t for k=2,3...,n.
It follows that the subgroup H contains all transpositions of
the form (1 k).

Further, for any integers 2 < k < m < n we have
(k m) = (1 k)(1 m)(1 k). Therefore the subgroup H contains
all transpositions. Finally, every permutation in S(n) is a

product of transpositions, therefore it is contained in H.
Thus H = S(n).

Remark. Although the group S(n) is generated by two
elements, its subgroups need not be generated by two
elements.



Cyclic groups

A cyclic group is a subgroup generated by a single
element.

Cyclic group (g) = {g": n € Z}.

Any cyclic group is Abelian.

If g has finite order n, then (g) consists of n
elements g, g%,...,8" 1, g"=e.

If g is of infinite order, then (g) is infinite.
Examples of cyclic groups: 7, 37, Zs, S(2), A(3).
Examples of noncyclic groups: any non-Abelian
group, Q with addition, Q \ {0} with multiplication.



Subgroups of Z

Integers Z with addition form a cyclic group, Z = (1) = (—1).
The proper cyclic subgroups of Z are: the trivial subgroup

{0} = (0) and, for any integer m > 2, the group

mZ = (m) = (—m). These are all subgroups of Z.

Theorem Every subgroup of a cyclic group is cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G. Let g be the generator of G, G = {g": n€ Z}.
Denote by k the smallest positive integer such that gk € H
(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = (g*).

Take any he€ H. Then h=g" for some n& Z. We have
n = kq + r, where g is the quotient and r is the remainder of
nby k (0<r<k). Itfollowsthat g" = g" 4 = g"g=ka

= h(gk)™9 € H. By the choice of k, we obtain that r = 0.
Thus h=g" = g" = (g")? € (g").



