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Lecture 28:
Cyclic groups (continued).

Cosets.
Lagrange’s Theorem.



Generators of a group

Let S be a nonempty subset of a group G . The group
generated by S , denoted 〈S〉, is the smallest subgroup of G
that contains the set S . The elements of the set S are called
generators of the group 〈S〉.

Theorem 1 The group 〈S〉 is well defined. Namely, it is the
intersection of all subgroups of G that contain the set S .

Theorem 2 The subgroup 〈S〉 consists of all elements of the
form g1g2 . . . gk , where each gi = s or s−1 for some s ∈ S .

A cyclic group is a subgroup generated by a single element.
Any cyclic group is Abelian.

Cyclic group: 〈g〉 = {g n : n ∈ Z} (in multiplicative notation)
or 〈g〉 = {ng : n ∈ Z} (in additive notation).

If the generator g has finite order n, then 〈g〉 consists of n
elements. If g is of infinite order, then 〈g〉 is infinite.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is
cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G . Let g be the generator of G , G = {g n : n ∈ Z}.
Denote by k the smallest positive integer such that g k ∈ H

(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = 〈g k〉.

Take any h ∈ H. Then h = g n for some n ∈ Z. We have
n = kq + r , where q is the quotient and r is the remainder of
n by k (0 ≤ r < k). It follows that g r = g n−kq = g ng−kq

= h(g k)−q ∈ H. By the choice of k, we obtain that r = 0.
Thus h = g n = g kq = (g k)q ∈ 〈g k〉.



Cosets

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah : h ∈ H}, where a ∈ G . Similarly, a right coset of H
in G is a set of the form Ha = {ha : h ∈ H}, where a ∈ G .

Theorem Let H be a subgroup of G and define a relation R on G

by aRb ⇐⇒ a ∈ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b−1a ∈ H.
Reflexivity: aRa since a−1a = e ∈ H.
Symmetry: aRb =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H

=⇒ bRa. Transitivity: aRb and bRc =⇒ b−1a, c−1b ∈ H

=⇒ c−1a = (c−1b)(b−1a) ∈ H =⇒ aRc .

Corollary The cosets of the subgroup H in G form a partition of
the set G .

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G . Clearly, the equivalence class of g is gH.



Examples of cosets

• G = Z, H = nZ.
The coset of a ∈ Z is [a]n = a + nZ, the congruence class of
a modulo n.

• G = R
3, H is the plane x + 2y − z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, y0, z0) ∈ R

3 is the plane x + 2y − z = x0 + 2y0 − z0
parallel to H.

• G = S(n), H = A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

• G is any group, H = G .
There is only one coset, G .

• G is any group, H = {e}.
Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted o(G ). Given a subgroup H of G , the number of
cosets of H in G is called the index of H in G and denoted
[G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G , then o(G ) = [G : H] · o(H). In particular, the order of H
divides the order of G .

Proof: For any a ∈ G define a function f : H → aH by
f (h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f (h1) = f (h2) =⇒ ah1 = ah2 =⇒ h1 = h2.
Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G ,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order of any
element g ∈ G divides the order of G .

Proof: The order of g ∈ G is the order of the cyclic group
〈g〉, which is a subgroup of G .

Corollary 2 Any group G of prime order p is cyclic.

Proof: Take any element g ∈ G different from e. Then
o(g) 6= 1, hence o(g) = p, and this is also the order of the
cyclic subgroup 〈g〉. It follows that 〈g〉 = G .

Corollary 3 If G is a finite group, then g o(G) = 1 for all
g ∈ G .

Proof: We have g n = 1 whenever n is a multiple of o(g).
By Corollary 1, o(G ) is a multiple of o(g) for all g ∈ G .



Corollaries of Lagrange’s Theorem

Corollary 4 (Fermat’s Little Theorem) If p is a prime
number then ap−1 ≡ 1 mod p for any integer a that is not a
multiple of p.

Proof: ap−1 ≡ 1 mod p means that [a]p−1
p = [1]p.

a is not a multiple of p means that [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(Gp) = p − 1 and apply Corollary 3.

Corollary 5 (Euler’s Theorem) If n is a positive integer
then aφ(n) ≡ 1 mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1 mod n means that [a]
φ(n)
n = [1]n.

a is coprime with n means that the congruence class [a]n is in
Gn. It remains to recall that o(Gn) = φ(n) and apply
Corollary 3.


