MATH 433
Applied Algebra

Lecture 28:
Cyclic groups (continued).
Cosets.
Lagrange’s Theorem.



Generators of a group

Let S be a nonempty subset of a group G. The group
generated by S, denoted (S), is the smallest subgroup of G
that contains the set S. The elements of the set S are called
generators of the group (S).

Theorem 1 The group (S) is well defined. Namely, it is the
intersection of all subgroups of G that contain the set S.

Theorem 2 The subgroup (S) consists of all elements of the
form gig»...gk, where each g =s or s~! for some s € S.

A cyclic group is a subgroup generated by a single element.
Any cyclic group is Abelian.

Cyclic group: (g) = {g": n € Z} (in multiplicative notation)
or (g) ={ng :neZ} (in additive notation).

If the generator g has finite order n, then (g) consists of n
elements. If g is of infinite order, then (g) is infinite.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is
cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G. Let g be the generator of G, G = {g": n € Z}.
Denote by k the smallest positive integer such that gk € H
(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = (g*).

Take any he€ H. Then h=g" for some n& Z. We have
n = kq + r, where g is the quotient and r is the remainder of
nby k (0<r<k). Itfollowsthat g’ = g" % = g'g=*

= h(g*)~7 € H. By the choice of k, we obtain that r = 0.
Thus h=g" = g"/ = (g")7 € (g").



Cosets

Definition. Let H be a subgroup of a group G. A coset

(or left coset) of the subgroup H in G is a set of the form

aH = {ah: h € H}, where a € G. Similarly, a right coset of H
in G is a set of the form Ha = {ha: he€ H}, where a <€ G.

Theorem Let H be a subgroup of G and define a relation R on G
by aRb <= a € bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b1a € H.

Reflexivity: aRa since a la=ec H.

Symmetry: aRb = b lac H = alb=(b"1la)tecH
— bRa. Transitivity: aRb and bRc = b la,clbe H
— cla=(clb)(b7ta) e H = aRc.

Corollary The cosets of the subgroup H in G form a partition of
the set G.

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G. Clearly, the equivalence class of g is gH.



Examples of cosets
e G=7, H=nZ.

The coset of a € Z is [a], = a+ nZ, the congruence class of
a modulo n.

e G=R3 Histheplane x +2y — z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, Y0, 20) € R? is the plane x +2y — z = xg + 2y — 2o
parallel to H.

e G=15(n), H=A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

e G isany group, H=G.

There is only one coset, G.

e G is any group, H = {e}.

Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted o(G). Given a subgroup H of G, the number of
cosets of H in G is called the index of H in G and denoted
[G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G, then o(G) =[G : H] - o(H). In particular, the order of H
divides the order of G.

Proof: For any a € G define a function f : H — aH by
f(h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f(hl) = f(hz) — ah]_ = ah2 — h]_ = h2.

Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G,
the theorem follows.



Corollaries of Lagrange’s Theorem
Corollary 1 If G is a finite group, then the order of any
element g € G divides the order of G.

Proof: The order of g € G is the order of the cyclic group
(g), which is a subgroup of G.

Corollary 2 Any group G of prime order p is cyclic.

Proof: Take any element g € G different from e. Then
o(g) # 1, hence o(g) = p, and this is also the order of the
cyclic subgroup (g). It follows that (g) = G.

Corollary 3 If G is a finite group, then g°(¢) =1 for all
geG.

Proof: We have g" =1 whenever n is a multiple of o(g).
By Corollary 1, o(G) is a multiple of o(g) for all g € G.



Corollaries of Lagrange’s Theorem

Corollary 4 (Fermat’s Little Theorem) If p is a prime
number then a?~! =1 mod p for any integer a that is not a
multiple of p.

Proof: a”~' =1 mod p means that [a]5~! = [1],.

a is not a multiple of p means that [a], is in G,, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(G,) = p — 1 and apply Corollary 3.

Corollary 5 (Euler’'s Theorem) If nis a positive integer
then a®(" =1 mod n for any integer a coprime with n.

Proof: a®™ =1 mod n means that [a]5"” = [1],.

a is coprime with n means that the congruence class [a], is in
G,. It remains to recall that o(G,) = ¢(n) and apply
Corollary 3.



