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Lecture 29:
Lagrange’s Theorem (continued).
Classification of subgroups.
Quotient group.



Lagrange’s Theorem

Definition. Let H be a subgroup of a group G. A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah: h € H}, where a€ G.

Proposition The cosets of the subgroup H in G form a
partition of the set G.

Definition. The number of elements in a group G is called
the order of G and denoted o(G). Given a subgroup H of G,
the number of cosets of H in G is called the index of H in G
and denoted [G : HJ.

Theorem (Lagrange) If H is a subgroup of a finite group
G, then o(G) =[G : H] - o(H). In particular, the order of H
divides the order of G.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order of
any element g € G divides the order of G.

Corollary 2 Any group G of prime order p is cyclic.

Corollary 3 If G is a group of prime order, then it
has only 2 subgroups: the trivial subgroup and G
itself.

Corollary 4 The alternating group A(n), n > 2,
consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the
symmetric group S(n). The latter consists of n! elements.



o(G)

Corollary 5 If G is a finite group, then g = e for all

geG.

Corollary 6 (Fermat’s Little Theorem) If p is a prime
number then a?~! =1 mod p for any integer a that is not a
multiple of p.

Proof: a*~' =1 mod p means that [a]5~ = [1],.

a is not a multiple of p means that [a], isin Gp, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(G,) = p — 1 and apply Corollary 5.

Corollary 7 (Euler’s Theorem) If nis a positive integer
then a®(" =1 mod n for any integer a coprime with n.

Proof: a®™ =1 mod n means that [a]5"” = [1],.

a is coprime with n means that the congruence class [a], is in
G,. It remains to recall that o(G,) = ¢(n) and apply
Corollary 5.



Classification of subgroups
e Subgroups of (Z1g,+).

The group is cyclic: Zyo = ([1]) = ([3]) = ([7]) = ([9])-
Therefore any subgroup of Ziq is also cyclic. There are three
proper subgroups: the trivial subgroup {[0]} (generated by
[0]), a cyclic subgroup of order 2 {[0],[5]} (generated by [5]),
and a cyclic subgroup of order 5 {[0],[2], [4], [6], [8]}
(generated by either of the elements [2], [4], [6], and [8]).

e Subgroups of (Gis, X).

The group consists of 8 congruence classes modulo 15:
Gis = {[1], [2],[4], [7], [8], [11], [13], [14]}. It is Abelian.
However Gis is not cyclic since it contains a non-cyclic

subgroup {[1], [4], [11], [14]} = {[1], [4], [-4], [-1]}. The
other proper subgroups of Gys are cyclic: {[1]}, {[1],[4]},

{[4, [0}, {[1], (1413, {11], (21, (4], (8]}, {[1], 4], [7], [13]}-



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique
subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take
any divisor d of n. Since the order of g is n, it follows that
the element g/ has order d. Therefore a cyclic group

H = (g") has order d.

Now assume H’ is another subgroup of G of order d. The
group H' is cyclic since G is cyclic. Hence H' = (g*) for
some k € Z. Since the order of the element g* is d while the
order of g is n, it follows that gcd(n, k) = n/d. We know
that gcd(n, k) = an+ bk for some a,b € Z. Then

gn/d — gan+bk — gnagkb — (gn)a(gk)b — (gk)b c <gk> — H.
Consequently, H = (g"/4) C H'. However H and H’ both
consist of d elements. Thus H' = H.



e Subgroups of S(3).
The group consists of 6 permutations:
S5(3) ={id, (1 2),(13),(23),(123),(132)}. Itisnot

Abelian. All proper subgroups of S(3) are cyclic: {id},
{id, (1 2)}, {id, (1 3)}, {id,(23)}, and {id, (12 3),(132)}.

e Subgroups of A(4).

The group consists of 12 permutations:

A(4) ={id,(12)(34),(13)(24),(14)(23),(123
(124),(142),(134),(143),(234),(2

It is not Abelian. The cyclic subgroups are {id},

{id, (1 2)(34)}, {id, (1 3)(2 4)}, {id, (1 4)(2 3)},
{id, (123),(132)}, {id,(124),(142)},
{id, (13 4),(143)}, and {id, (2 3 4), (24 3)}.
h
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), (132),
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A(4) has one non-cyclic subgroup of order 4:

2)(34),(13)(24),(14)(23)}.
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{id,



Quotient group

Let’s recall the construction of the group (Z,,+). The
elements are congruence classes a + nZ modulo n and the
operation is defined by (a+ nZ)+ (b + nZ) = (a+ b) + nZ.
Observe that congruence classes a + nZ are also cosets of the
subgroup nZ in the group Z.

Now consider an arbitrary group G (with multiplicative
operation) and a subgroup H of G. Let G/H denote the set
of all cosets gH of the subgroup H in G. We try to define an
operation on G/H by the rule (aH)(bH) = (ab)H. Assume
that this operation is well defined (it need not be). Then it
makes G/H into a group, which is called the quotient group
of G by the subgroup H. Indeed, the closure axiom and
associativity will hold in G/H since they hold in G. Further,
the identity element will be eH = H and the inverse of gH
will be g7 1H.

Question. When the operation on G/H is well defined?



