MATH 433
Applied Algebra

Lecture 35:
Greatest common divisor of polynomials.
Factorisation of polynomials.



Division of polynomials

Let f(x),g(x) € F[x] be polynomials over a field F and
g(x) # 0. We say that g(x) divides f(x) if f = gg for some
polynomial g(x) € F[x]. Then g is called the quotient of f

by g.

Let f(x) and g(x) be polynomials and deg(g) > 0. Suppose
that f = qg + r for some polynomials g and r such that
deg(r) < deg(g). Then r is the remainder and g is the
(partial) quotient of f by g.

Note that g(x) divides f(x) if the remainder is 0.
Theorem Let f(x) and g(x) be polynomials and

deg(g) > 0. Then the remainder and the quotient of f by g
are well-defined. Moreover, they are unique.



Long division of polynomials
Problem. Divide x*+2x3 —3x2 —9x —7 by x?—2x — 3.

x> + 4x + 8

x2—2x—=3] x* + 2x* — 3x* — 9x — 7
xt — 233 — 3x?

4x3 — Ox — 7
4x3 — 8x%2 — 12x

8x%2 + 3x — 7
8x? — 16x — 24

19x + 17

We have obtained that

X+ 23 =32 —9x —T=x*(x>—-2x—3) +4x> - 9x — 7,
4x3 — 9x — 7 = 4x(x?> — 2x — 3) + 8x%> + 3x — 7,

8x? +3x — 7 =8(x* —2x — 3) + 19x + 17.  Therefore
x*+2x*—=3x2 —9x —7 = (x> +4x+8)(x* —2x —3) + 19x + 17.



Zeroes of polynomials

Definition. An element « € IF is called a zero (or a root) of
a polynomial f € F[x] if f(a)=0.

Theorem « € F is a zero of f € F[x] if and only if the
polynomial f(x) is divisible by x — a.

Proposition Suppose f(x) = x"+ ¢c,_1x" 1+ -+ ax+
is a polynomial with integer coefficients and ¢y £ 0. Then
any rational zero of f is an integer dividing c.

Example. f(x) = x* + 6x* + 11x + 6.

By Proposition, possible rational zeroes of f are +1, +2, +3.
Moreover, there are no positive zeroes as all coefficients are
positive. We obtain that f(—1) =0, f(—2) =0, and

f(—3) = 0. First we divide f(x) by x + 1:

x3 +6x% 4+ 11x + 6 = (x + 1)(x* + 5x + 6). Then we divide
x2+5x+6 by x+2: x> +5x+6=(x+2)(x+3). Thus
f(x)=(x+1)(x+2)(x+ 3).



Greatest common divisor

Definition. Given non-zero polynomials f, g € F[x],
a greatest common divisor gcd(f, g) is a
polynomial over I such that (i) gcd(f, g) divides f
and g, and (ii) if any p € F[x] divides both f and
g, then it also divides gcd(f, g).

Theorem The polynomial gcd(f, g) exists and is
unique up to a scalar multiple. Moreover, it is a
non-zero polynomial of the least degree that can be
represented as uf + vg, where u,v € F[x].



Theorem The polynomial gcd(f, g) exists and is unique up
to a scalar multiple. Moreover, it is a non-zero polynomial of
the least degree that can be represented as uf + vg, where
u,v € Flx].

Proof: Let S denote the set of all polynomials of the form

uf + vg, where u,v € F[x]. The set S contains non-zero
polynomials, say, f. Let d(x) be any such polynomial of the
least possible degree. It is easy to show that remainders under
division of f and of g by d belong to S. By the choice of d,
both remainders must be zeroes. Hence d divides both f and
g. Further, if any p(x) € F[x] divides both f and g, then it
also divides every element of S. In particular, it divides d.
Thus d = gcd(f, g).

Now assume d; is another greatest common divisor of f and
g. By definition, d; divides d and d divides d;. This is only
possible if d and d; are scalar multiples of each other.



Euclidean algorithm

Lemma 1 If a polynomial g divides a polynomial f
then gcd(f,g) = g.

Lemma 2 If g does not divide f and r is the
remainder of f by g, then gcd(f, g) = gecd(g, r).

Theorem For any non-zero polynomials

f,g € F[x] there exists a sequence of polynomials
rn,r,....rk € F[x] suchthat n =f, n=g, ris
the remainder of r,_, by ri_q for 3 < i < k, and r,
divides ry_1. Then gcd(f,g) = r.



Irreducible polynomials

Definition. A polynomial f € F[x] is said to be irreducible
over F if it cannot be written as f = gh, where g, h € F[x],
and deg(g), deg(h) < deg(f).

Irreducible polynomials are for multiplication of polynomials
what prime numbers are for multiplication of integers.

Proposition 1 Let f be an irreducible polynomial and
suppose that f divides a product fi,. Then f divides at least
one of the polynomials f; and £.

Proposition 2 Let f be an irreducible polynomial and
suppose that f divides a product of polynomials fif,...f,.
Then f divides at least one of the factors f,f,..., f,.

Proposition 3 Let f be an irreducible polynomial that
divides a product fif,...f, of other irreducible polynomials.
Then one of the factors fi, f,,...,f, is a scalar multiple of f.



Unique factorisation

Theorem Any polynomial f € F[x]| of positive degree admits
a factorisation f = p1p>...p, into irreducible factors over F.
This factorisation is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f). It is based on a simple fact: if

pip> ... ps is an irreducible factorisation of f and g1q>...q:
is an irreducible factorisation of g, then p1ps...psq1q2 ... q:
is an irreducible factorisation of fg.

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q;q,...q; then one of the factors
qi,...,q: is a scalar multiple of p.



Factorisation over C and R

Clearly, any polynomial f € F[x]| of degree 1 is irreducible
over F. Depending on the field IF, there may exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra The only irreducible
polynomials over the field C of complex numbers are linear
polynomials. Equivalently, any polynomial f € C[x] of a
positive degree n can be factorised as

f(x)=c(x—a1)(x —a)...(x —ap),
where ¢, ay,...,a, € C and ¢ # 0.
Corollary The only irreducible polynomials over the field R of

real numbers are linear polynomials and quadratic polynomials
without real roots.

Remark. If f(x) = x®+ ax + b is an irreducible polynomial
over R, then f(x) = (x —a)(x —a) = x> — (a + @)x + aq,
where o and @ are complex conjugate roots of f.



Examples of factorisation

o f(x)=x*—1 over R,

() = (@ = (2 +1) = (x = Dx + 1) + 1).
The polynomial x? + 1 is irreducible over R.

. f(x)—x4—1 over C.
X

21D+ 1)=(x—-1(x+1)(x*+1)
1)(x + 1) (x — ) (x+1).

o f(x)=x%—1 over Z.

It follows from Fermat's Little Theorem that any non-zero
element of the field Z7 is a root of the polynomial f. Hence f
has 6 distinct roots. Now it follows from the Unique
Factorisation Theorem that

f(x)=(x—1)(x—2)(x —3)(x —4)(x —5)(x — 6).



