Sample problems for Exam 2

Any problem may be altered, removed or replaced by a different one!

Problem 1. Let R be a relation defined on the set of positive integers by $x R y$ if and only if $\operatorname{gcd}(x, y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

Problem 2. A Moore diagram below depicts a 3 -state acceptor automaton over the alphabet $\{a, b\}$ which accepts those input words that do not contain a subword $a b$ (and rejects any input word containing a subword $a b$). Prove that no 2 -state automaton can perform the same task.

Problem 3. List all cycles of length 3 in the symmetric group $S(4)$. Make sure there are no repetitions in your list.

Problem 4. Write the permutation $\pi=\left(\begin{array}{ll}4 & 5\end{array} 6\right)(345)(123)$ as a product of disjoint cycles.

Problem 5. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.
Problem 6. What is the largest possible order of an element of the alternating group A(10)?

Problem 7. Consider the operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?

Problem 8. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{cc}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

Problem 9. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :

$$
A=\left(\begin{array}{cc}
{[0]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right), \quad B=\left(\begin{array}{cc}
{[1]} & {[0]} \\
{[0]} & {[1]}
\end{array}\right), \quad C=\left(\begin{array}{cc}
{[1]} & {[1]} \\
{[1]} & {[0]}
\end{array}\right), \quad D=\left(\begin{array}{cc}
{[0]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right) .
$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Problem 10. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v=\lambda v$ if λv is an integer and $\lambda \odot v=v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

