MATH 433
Applied Algebra

Lecture 2:
 Euclidean algorithm.

Division of integer numbers

Let a and b be integers and $a>0$. Suppose that $b=a q+r$ for some integers q and r such that $0 \leq r<a$. Then r is the remainder and q is the quotient of b by a.

Theorem 1 Let a and b be integers and $a>0$.
Then the remainder and the quotient of b by a are well-defined.

Division of integer numbers

Theorem 2 Let a and b be integers and $a>0$. Then the remainder and the quotient of b by a are uniquely determined.

Proof: Suppose that $b=a q_{1}+r_{1}$ and $b=a q_{2}+r_{2}$, where $q_{1}, r_{1}, q_{2}, r_{2}$ are integers and $0 \leq r_{1}, r_{2}<a$. We need to show that $q_{1}=q_{2}$ and $r_{1}=r_{2}$.
We have $a q_{1}+r_{1}=a q_{2}+r_{2}$, which implies that $r_{1}-r_{2}=a q_{2}-a q_{1}=a\left(q_{2}-q_{1}\right)$. Adding inequalities
$0 \leq r_{1}<a$ and $-a<-r_{2} \leq 0$, we obtain $-a<r_{1}-r_{2}<a$.
Consequently, $-1<\left(r_{1}-r_{2}\right) / a<1$. On the other hand, $\left(r_{1}-r_{2}\right) / a=q_{2}-q_{1}$ is an integer. Therefore $\left(r_{1}-r_{2}\right) / a=q_{2}-q_{1}=0$ so that $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

Greatest common divisor

Given two natural numbers a and b, the greatest common divisor $\operatorname{gcd}(a, b)$ of a and b is the largest natural number that divides both a and b.

Lemma 1 If a divides b then $\operatorname{gcd}(a, b)=a$.
Lemma 2 If $a \nmid b$ and r is the remainder of b by a, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.
Proof: We have $b=a q+r$, where q is an integer.
Let $d \mid a$ and $d \mid b$. Then $a=d n, b=d m$ for some $n, m \in \mathbb{Z}$
$\Longrightarrow r=b-a q=d m-d n q=d(m-n q) \Longrightarrow d$ divides r.
Conversely, let $d \mid r$ and $d \mid a$. Then $r=d k, a=d n$ for some $k, n \in \mathbb{Z} \Longrightarrow b=d n q+d k=d(n q+k) \Longrightarrow d$ divides b. Thus the pairs a, b and r, a have the same common divisors. In particular, $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.

Euclidean algorithm

Theorem Given $a, b \in \mathbb{Z}, 0<a<b$, there is a decreasing sequence of positive integers $r_{1}>r_{2}>\cdots>r_{k}$ such that $r_{1}=b, r_{2}=a, r_{i}$ is the remainder of r_{i-2} by r_{i-1} for $3 \leq i \leq k$, and r_{k} divides r_{k-1}. Then $\operatorname{gcd}(a, b)=r_{k}$.

Example. $\quad a=1356, b=744 . \operatorname{gcd}(a, b)=$?
We obtain

$$
\begin{aligned}
& 1356=744 \cdot 1+612 \\
& 744=612 \cdot 1+132 \\
& 612=132 \cdot 4+84 \\
& 132=84 \cdot 1+48 \\
& 84=48 \cdot 1+36 \\
& 48=36 \cdot 1+12 \\
& 36=12 \cdot 3
\end{aligned}
$$

Thus $\operatorname{gcd}(1356,744)=12$.

Problem. Find an integer solution of the equation $1356 m+744 n=12$.
Let us use calculations done for the Euclidean algorithm applied to 1356 and 744 .
$1356=744 \cdot 1+612$
$\Longrightarrow 612=1 \cdot 1356-1 \cdot 744$
$744=612 \cdot 1+132$
$\Longrightarrow 132=744-612=-1 \cdot 1356+2 \cdot 744$
$612=132 \cdot 4+84$
$\Longrightarrow 84=612-4 \cdot 132=5 \cdot 1356-9 \cdot 744$
$132=84 \cdot 1+48$
$\Longrightarrow 48=132-84=-6 \cdot 1356+11 \cdot 744$
$84=48 \cdot 1+36$
$\Longrightarrow 36=84-48=11 \cdot 1356-20 \cdot 744$
$48=36 \cdot 1+12$
$\Longrightarrow 12=48-36=-17 \cdot 1356+31 \cdot 744$
Thus $m=-17, n=31$ is a solution.

Problem. Find an integer solution of the equation $1356 m+744 n=12$.
Let us consider a partitioned matrix $\left(\begin{array}{cc|c}1 & 0 & 1356 \\ 0 & 1 & 744\end{array}\right)$.
This is the augmented matrix of the system $\left\{\begin{array}{l}x=1356, \\ y=744 .\end{array}\right.$
We are going to apply elementary row operations to this matrix until we get 12 in the rightmost column.

$$
\left.\begin{array}{l}
\left(\begin{array}{rr|r|}
1 & 0 & 1356 \\
0 & 1 & 744
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -1 & 612 \\
0 & 1 & 744
\end{array}\right) \rightarrow\left(\begin{array}{rr|r|r}
1 & -1 & 612 \\
-1 & 2 & 132
\end{array}\right) \\
\rightarrow\left(\begin{array}{rr|r|r}
5 & -9 & 84 \\
-1 & 2 & 132
\end{array}\right) \rightarrow\left(\begin{array}{rr}
5 & -9 \\
-6 & 11
\end{array}\right. \\
48
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
11 & -20 & 36 \\
-6 & 11 & 48
\end{array}\right) .
$$

Thus $m=-17, n=31$ is a solution.

Theorem Let a and b be positive integers. Then $\operatorname{gcd}(a, b)$ is the smallest positive number represented as $n a+m b, m, n \in \mathbb{Z}$ (that is, as an integral linear combination of a and b).
Proof: Let $L=\{x \in \mathbb{P} \mid x=n a+m b$ for some $m, n \in \mathbb{Z}\}$. The set L is not empty as $b=0 a+1 b \in L$. Hence it has the smallest element c. We have $c=n a+m b, m, n \in \mathbb{Z}$.
Consider the remainder r of a by c. Then $r=a-c q$, where q is the quotient of a by c. It follows that
$r=a-(n a+m b) q=(1-n q) a+(-m q) b$.
Since $r<c$, it cannot belong to the set L. Therefore $r=0$. That is, c divides a. Similarly, one can prove that c divides b. Let $d>0$ be another common divisor of a and b.
Then $a=d k$ and $b=d l$ for some $k, l \in \mathbb{Z}$
$\Longrightarrow c=n a+m b=n d k+m d l=d(n k+m l)$
$\Longrightarrow d$ divides $c \Longrightarrow d \leq c$.
Corollary $\operatorname{gcd}(a, b)$ is divisible by any other common divisor of a and b.

