MATH 433
 Applied Algebra

Lecture 7:
Invertible congruence classes.

Congruence classes

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo n.

Notation. [a] ${ }_{n}$ or simply [a]. Also denoted $a+n \mathbb{Z}$ as $[a]_{n}=\{a+n k: k \in \mathbb{Z}\}$.

For any integers a and b, the congruence classes $[a]_{n}$ and $[b]_{n}$ either coincide, or else they are disjoint.

The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}. It consists of n elements
$[0]_{n},[1]_{n},[2]_{n}, \ldots,[n-1]_{n}$, which form a partition of the set \mathbb{Z}.

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_{n} for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n}-[b]_{n}=[a-b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n} .}
\end{gathered}
$$

Theorem The arithmetic operations on \mathbb{Z}_{n} are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Invertible congruence classes

We say that a congruence class [a]n is invertible (or the integer a is invertible modulo n) if there exists a congruence class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$. If this is the case, then $[b]_{n}$ is called the inverse of $[a]_{n}$ and denoted $[a]_{n}^{-1}$. Also, we say that b is the (multiplicative) inverse of a modulo n.
The set of all invertible congruence classes in \mathbb{Z}_{n} is denoted G_{n} or \mathbb{Z}_{n}^{*}.

A nonzero congruence class [a] $]_{n}$ is called a zero-divisor if $[a]_{n}[b]_{n}=[0]_{n}$ for some $[b]_{n} \neq[0]_{n}$.

Examples. - In \mathbb{Z}_{6}, the congruence classes $[1]_{6}$ and $[5]_{6}$ are invertible since $[1]_{n}^{2}=[5]_{6}^{2}=[1]_{6}$. The classes $[2]_{6},[3]_{6}$, and $[4]_{6}$ are zero-divisors since $[2]_{6}[3]_{6}=[4]_{6}[3]_{6}=[0]_{6}$.

- $\ln \mathbb{Z}_{7}$, all nonzero congruence classes are invertible since $[1]_{7}^{2}=[2]_{7}[4]_{7}=[3]_{7}[5]_{7}=[6]_{7}^{2}=[1]_{7}$.

Properties of invertible congruence classes

Theorem (i) If $[a]_{n}$ is invertible, then $[a]_{n}^{-1}$ is also invertible and $\left([a]_{n}^{-1}\right)^{-1}=[a]_{n}$.
(ii) The inverse $[a]_{n}^{-1}$ is always unique.
(iii) If $[a]_{n}$ and $[b]_{n}$ are invertible, then the product $[a]_{n}[b]_{n}$ is also invertible and $\left([a]_{n}[b]_{n}\right)^{-1}=[a]_{n}^{-1}[b]_{n}^{-1}$.
(iv) Zero-divisors are never invertible.

Proof: (i) Let $[b]_{n}=[a]_{n}^{-1}$. Then $[b]_{n}[a]_{n}=[a]_{n}[b]_{n}=[1]_{n}$, which means that $[a]_{n}=[b]_{n}^{-1}$.
(ii) Suppose that $[b]_{n}$ and $\left[b^{\prime}\right]_{n}$ are both inverses of $[a]_{n}$.

Then $[b]_{n}=[b]_{n}[1]_{n}=[b]_{n}[a]_{n}\left[b^{\prime}\right]_{n}=[1]_{n}\left[b^{\prime}\right]_{n}=\left[b^{\prime}\right]_{n}$.
(iii) We only need to show that $\left([a]_{n}[b]_{n}\right)\left([a]_{n}^{-1}[b]_{n}^{-1}\right)=[1]_{n}$. Indeed, $\left([a]_{n}[b]_{n}\right)\left([a]_{n}^{-1}[b]_{n}^{-1}\right)=[a]_{n}[a]_{n}^{-1} \cdot[b]_{n}[b]_{n}^{-1}=[1]_{n}[1]_{n}=[1]_{n}$.
(iv) If $[a]_{n}$ is invertible and $[a]_{n}[b]_{n}=[0]_{n}$, then
$[b]_{n}=[1]_{n}[b]_{n}=[a]_{n}^{-1}[a]_{n}[b]_{n}=[a]_{n}^{-1}[0]_{n}=[0]_{n}$.
Therefore $[a]_{n}$ cannot be a zero-divisor.

Theorem A nonzero congruence class $[a]_{n}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$. Otherwise $[a]_{n}$ is a zero-divisor.
Proof: Let $d=\operatorname{gcd}(a, n)$. If $d>1$ then n / d and a / d are integers, $[n / d]_{n} \neq[0]_{n}$, and $[a]_{n}[n / d]_{n}=$ $=[a n / d]_{n}=[a / d]_{n}[n]_{n}=[a / d]_{n}[0]_{n}=[0]_{n}$. Hence $[a]_{n}$ is a zero-divisor.
Now consider the case $\operatorname{gcd}(a, n)=1$. In this case 1 is an integral linear combination of a and n : $m a+k n=1$ for some $m, k \in \mathbb{Z}$. Then $[1]_{n}=[m a+k n]_{n}=[m a]_{n}=[m]_{n}[a]_{n}$.
Thus $[a]_{n}$ is invertible and $[a]_{n}^{-1}=[m]_{n}$.

Problem. Find the inverse of 23 modulo 107.
Numbers 23 and 107 are coprime (they are actually prime). We use the matrix method to represent 1 as an integral linear combination of these numbers.

$$
\begin{aligned}
& \left(\begin{array}{ll|r}
1 & 0 & 107 \\
0 & 1 & 23
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -4 & 15 \\
0 & 1 & 23
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & -4 & 15 \\
-1 & 5 & 8
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rr|r}
2 & -9 & 7 \\
-1 & 5 & 8
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
2 & -9 & 7 \\
-3 & 14 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rr}
23 & -107 \\
-3 & 14
\end{array}\right)
\end{aligned}
$$

From the 2 nd row of the last matrix we read off that $(-3) \cdot 107+14 \cdot 23=1$. It follows that $[1]_{107}=[(-3) \cdot 107+14 \cdot 23]_{107}=[14 \cdot 23]_{107}=[14]_{107}[23]_{107}$.
Thus $[23]_{107}^{-1}=[14]_{107}$.

Problem. Find all integer solutions of the equation $107 m+23 n=1$.

From the solution of the previous problem we get that

$$
\begin{gathered}
(-3) \cdot 107+14 \cdot 23=1 \\
23 \cdot 107-107 \cdot 23=0
\end{gathered}
$$

It follows that we have solutions $m=-3+23 k$, $n=14-107 k$ for any $k \in \mathbb{Z}$.
These are all integer solutions!
Indeed, for any integer solution of the equation, the number n is the inverse of 23 modulo 107 . Since the inverse congruence class $[23]_{107}^{-1}=[14]_{107}$ is unique, it follows that $n=14-107 k$ for some $k \in \mathbb{Z}$. Then $m=-3+23 k$ for the same k.

