MATH 433
Applied Algebra
Lecture 8:
Linear congruences.

Modular arithmetic

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo $n: \quad[a]_{n}=\{a+n k: k \in \mathbb{Z}\}$.

The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}. It consists of n elements.

The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n}-[b]_{n}=[a-b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n} .}
\end{gathered}
$$

Invertible congruence classes

We say that a congruence class $[a]_{n}$ is invertible (or the integer a is invertible modulo n) if there is a congruence class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$. If this is the case, then $[b]_{n}$ is called the inverse of $[a]_{n}$ and denoted $[a]_{n}^{-1}$. Also, we say that b is a multiplicative inverse of a modulo n.

Theorem A nonzero congruence class $[a]_{n}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$.

The set of all invertible congruence classes in \mathbb{Z}_{n} is denoted G_{n} or \mathbb{Z}_{n}^{*}. This set is closed under multiplication.

Linear congruences

Linear congruence is a congruence of the form $a x \equiv b \bmod n$, where x is an integer variable. We can regard it as a linear equation in $\mathbb{Z}_{n}:[a]_{n} X=[b]_{n}$.
In the case $b=1$, solving the linear congruence is equivalent to finding the inverse of the congruence class $[a]_{n}$. In the case $b=0$, it is equivalent to determining if [a] n is a zero-divisor.

Theorem If the congruence class [a] ${ }_{n}$ is invertible, then the equation $[a]_{n} X=[b]_{n}$ has a unique solution in \mathbb{Z}_{n}, which is $X=[a]_{n}^{-1}[b]_{n}$.
Proof: Suppose $X \in \mathbb{Z}_{n}$ is a solution of the equation. Then $[a]_{n}^{-1}\left([a]_{n} X\right)=[a]_{n}^{-1}[b]_{n}$. We have

$$
[a]_{n}^{-1}\left([a]_{n} X\right)=\left([a]_{n}^{-1}[a]_{n}\right) X=[1]_{n} X=X .
$$

Conversely, if $X=[a]_{n}^{-1}[b]_{n}$, then

$$
[a]_{n} X=[a]_{n}\left([a]_{n}^{-1}[b]_{n}\right)=\left([a]_{n}[a]_{n}^{-1}\right)[b]_{n}=[1]_{n}[b]_{n}=[b]_{n} .
$$

Problem 1. Solve the congruence $23 x \equiv 6 \bmod 107$.

The numbers 23 and 107 are coprime. We know from the previous lecture that $[23]_{107}^{-1}=[14]_{107}$. Hence $[x]_{107}=[23]_{107}^{-1}[6]_{107}=[14]_{107}[6]_{107}=[84]_{107}$.

Problem 2. Solve the congruence $3 x \equiv 5 \bmod 15$.
The congruence has no solutions. Indeed, $3 x-5 \equiv 1 \bmod 3$ so that $3 x-5$ is never divisible by 3 . As a consequence, $3 x-5$ is not divisible by 15 .

Problem 3. Solve the congruence $3 x \equiv 6 \bmod 15$.
Checking all 15 elements of \mathbb{Z}_{15}, we find solutions: $x \equiv 2 \bmod 15, x \equiv 7 \bmod 15$, and $x \equiv 12 \bmod 15$. Equivalently, x is a solution if and only if $x \equiv 2 \bmod 5$.

More properties of congruences

Proposition 1 Let $a, b \in \mathbb{Z}$ and $c, n \in \mathbb{P}$.
Then the congruence $a c \equiv b c \bmod n c$ is equivalent to $a \equiv b \bmod n$.
Indeed, $a c \equiv b c \bmod n c$ means that $\frac{a c-b c}{n c}$ is an integer while $a \equiv b \bmod n$ means that $\frac{a-b}{n}$ is an integer.

Proposition 2 Let $a, b \in \mathbb{Z}$ and $c, n \in \mathbb{P}$. If $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b \bmod n$.
Indeed, $a c \equiv b c \bmod n$ means that $a c-b c=(a-b) c$ is divisible by n. Since $\operatorname{gcd}(c, n)=1$, it follows that $a-b$ is divisible by n.

Theorem The linear congruence $a x \equiv b \bmod n$ has a solution if and only if $d=\operatorname{gcd}(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n / d.

Proof: If the congruence has a solution x, then $a x=b+k n$ for some $k \in \mathbb{Z}$. Hence $b=a x-k n$, which is divisible by $\operatorname{gcd}(a, n)$.
Conversely, assume that d divides b. Then the linear congruence is equivalent to $a^{\prime} x \equiv b^{\prime} \bmod m$, where $a^{\prime}=a / d$, $b^{\prime}=b / d$ and $m=n / d$. In other words, $\left[a^{\prime}\right]_{m} X=\left[b^{\prime}\right]_{m}$, where $X=[x]_{m}$.
We have $\operatorname{gcd}\left(a^{\prime}, m\right)=\operatorname{gcd}(a / d, n / d)=\operatorname{gcd}(a, n) / d=1$. Hence the congruence class $\left[a^{\prime}\right]_{m}$ is invertible. By a previously proved theorem, all solutions x of the linear congruence form a single congruence class modulo $m, X=\left[a^{\prime}\right]_{m}^{-1}\left[b^{\prime}\right]_{m}$. This congruence class splits into d distinct congruence classes modulo $n=m d$.

Problem. Solve the congruence $12 x \equiv 6 \bmod 21$.
$\Longleftrightarrow 4 x \equiv 2 \bmod 7 \Longleftrightarrow 2 x \equiv 1 \bmod 7$
$\Longleftrightarrow[x]_{7}=[2]_{7}^{-1}=[4]_{7}$
$\Longleftrightarrow[x]_{21}=[4]_{21}$ or $[11]_{21}$ or $[18]_{21}$.

Problem. Find all integer solutions of the equation $12 x-21 y=6$.

For any integer solution of the equation, the number x is a solution of the linear congruence $12 x \equiv 6 \bmod 21$. By the above, $x \equiv 4 \bmod 7$, that is, $x=4+7 k$ for some $k \in \mathbb{Z}$. Then $y=(12 x-6) / 21=(12(4+7 k)-6) / 21=2+4 k$, which is also integer. Thus the general integer solution is $x=4+7 k, y=2+4 k$, where $k \in \mathbb{Z}$.

