MATH 433
Applied Algebra

Lecture 37:
Review for the final exam.



Topics for the final exam: Part |

e Mathematical induction, strong induction

e Greatest common divisor, Euclidean algorithm
e Primes, factorisation, Unique Factorisation Theorem
e Congruence classes, modular arithmetic

e Inverse of a congruence class

e Linear congruences

e Chinese Remainder Theorem

e Order of a congruence class

e Fermat’s Little Theorem, Euler's Theorem

e Euler’s phi-function

e Public key encryption, the RSA system



Topics for the final exam: Part ||

Relations, properties of relations
Finite state machines, automata

Permutations

Cycles, transpositions

Cycle decomposition of a permutation
Order of a permutation

Sign of a permutation

Symmetric and alternating groups

Abstract groups (definition and examples)
Semigroups

Rings, zero-divisors

Fields, characteristic of a field

Vector spaces over a field



Topics for the final exam: Part Il

Order of an element in a group
Subgroups

Cyclic groups

Cosets

Lagrange's Theorem
Isomorphism of groups

The ISBN code

Binary codes, error detection and error correction
Linear codes, generator matrix

Coset leaders, coset decoding table

Parity-check matrix, syndromes

Division of polynomials
Greatest common divisor of polynomials
Factorisation of polynomials



Problem. Solve the equation
2x190 1 x4+ x29 = 0 over the field Z1;.

The equation is equivalent to
x®(2x™ +x*2 +1)=0.

Hence x =0 or 2x* +x*? +1 =0. By Fermat's
Little Theorem, x'% =1 for any nonzero x € Z;.
Since 0 is not a solution of the equation

2x™ 4+ x* 41 =0, this equation is equivalent to
2x+x*+1=0 <= (x+1)°=0 < x=-1

Thus the solutions are x =0 and x = 10
(note that —1 = 10 mod 11).



Problem. Factorise p(x) = x*+ x® —2x>+3x — 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and —1. They are not zeros.
Hence p is either irreducible over QQ or else it is factored as

x*+x3—2x2+3x — 1= (ax® + bx + c)(a'x* + b'x + ¢').

Since p € Z[x], one can show that the factorisation (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a > 0 (otherwise we could
multiply each factor by —1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa’ =1, abl +ab=1, ac’ + bb' + d'c = -2,

bc’ + b'c =3 and cc’ = —1. The first and the last equations
imply that a=a' =1, c=1 or —1,and ¢ = —c. Then
b+ b =1 and bb' = —2, which implies {b,b'} = {2, —1}.
Finallyy, c=—-1if b=2 and c=1 if b=—-1. Wecan
check that indeed

x4+ x3 -2 +3x —1=(x*+2x - 1)(x®* — x + 1).



Problem. The polynomial f(x) = x®+3x> —5x® +3x — 1
has how many distinct complex roots?

Let p € C[x] be a nonzero polynomial. We say that a € C
is a root of p of multiplicity kK > 1 if the polynomial is
divisible by (x — a)* but not divisible by (x — a)**1.
Equivalently, p(x ) (x — a)¥q(x) for some polynomial g
such that g(a) # 0. If this is the case then

P(x) = ((x— ) )/ (%) + (x = a)*q'(x)
= k(x — a)*q(x) + (x = a)*q'(x) = (x — a)**r(x),
where r(x) = kg(x) + (x — @)q’(x). Note that r(x) is a

polynomial and r(a) = kg(a) # 0. Hence « is a root of p’ of
multiplicity k — 1 if kK > 1 and not a root of p' if k =1.



Problem. The polynomial f(x) = x® +3x®> —5x3 +3x — 1
has how many distinct complex roots?

By the Fundamental Theorem of Algebra, any polynomial
p € C[x] of degree n > 1 can be represented as

p(x) =c(x —a1)(x — ) ...(x —ay),

where ¢, aq,...,a, € C and ¢ #0. The numbers
Q1,Qp, ..., q, are roots of p, they need not be distinct. We
have
p(x) = c(x = f1)(x = B2) ... (x = Bm)*m,
where 1, ..., 8, are distinct roots of p and ki,...,k, are

their multiplicities. It follows from the above that
ged(p(x), p'(x)) = (x = Bu)* 7 H(x — o)™t (x — Bm) L.

As a consequence, the number of distinct roots of the
polynomial p equals deg(p) — deg(gcd(p, p')).



Problem. The polynomial f(x) = x® +3x®> —5x3 +3x — 1
has how many distinct complex roots?

Let's use the Euclidean algorithm to find the greatest common
divisor of the polynomials f(x) = x® +3x% —5x3 +3x — 1
and f'(x) = 6x° + 15x* — 15x? 4+ 3. First we divide f by f":

x®4+3x%—5x3+3x—1 = (6x°+15x* —15x°+3) (s x+ 15 ) + r(x),

where r(x) = —2x* — 2x3+ 2x2 + 2x — 2. It is convenient
to replace the remainder r(x) by its scalar multiple

F(x) = —gr(x) = x* +2x3 — x> — 2x + 1. Next we divide f’
by

6x> + 15x* — 156x2 + 3 = (x* + 2x® — x? — 2x + 1)(6x + 3).

Since f’ is divisible by 7, it follows that gcd(f,f") = ged(f’,r)
= gcd(f’, F) = F. Thus the number of distinct complex roots

of the polynomial f equals deg(f) — deg(gcd(f,f')) =6 —4

= 2.



Problem. The polynomial f(x) = x® +3x> —5x3 +3x — 1
has how many distinct complex roots?

As a follow-up to the solution, we can find the roots of the
polynomial f. It follows from the solution that the polynomial
g = f/gcd(f, ') has the same roots as f but, unlike f, all
roots of g are simple (i.e., of multiplicity 1). Dividing f by
F(x) = x* + 2x3 — x> — 2x + 1, we obtain

x®+3x°—=5x3+3x—1 = (x*+2x> —x? —2x+1)(x*+x—1).

The polynomial g(x) = x? + x — 1 has two real roots

Brp = 2(—=1£V/5). Therefore f(x) = (x — B1)"(x — )",
where k; and k» are positive integers, k; + ko = 6. Note that
B1B> = —1 (the constant term of g) and ({1682 = —1 (the
constant term of ). Then ff~% = (—1)**1 a rational
number. This suggests k1 — k, = 0 (so that k; = k, = 3).
We can check by direct multiplication that, indeed,

x0+3x°—5x343x—1 = (x>+x—1)* = (x—1)3(x—52)3.



