MATH 433 Applied Algebra Lecture 8: Linear congruences.

Modular arithmetic

Given an integer *a*, the **congruence class of** *a* **modulo** *n* is the set of all integers congruent to *a* modulo *n*: $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

The set of all congruence classes modulo n is denoted \mathbb{Z}_n . It consists of n elements.

The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n,$$

 $[a]_n - [b]_n = [a - b]_n,$
 $[a]_n \times [b]_n = [ab]_n.$

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer *a* is **invertible modulo** *n*) if there is a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$. Also, we say that *b* is a **multiplicative inverse of** *a* **modulo** *n*.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* . This set is closed under multiplication.

Linear congruences

Linear congruence is a congruence of the form $ax \equiv b \mod n$, where x is an integer variable. We can regard it as a linear equation in \mathbb{Z}_n : $[a]_n X = [b]_n$.

In the case b = 1, solving the linear congruence is equivalent to finding the inverse of the congruence class $[a]_n$. In the case b = 0, it is equivalent to determining if $[a]_n$ is a zero-divisor.

Theorem If the congruence class $[a]_n$ is invertible, then the equation $[a]_n X = [b]_n$ has a unique solution in \mathbb{Z}_n , which is $X = [a]_n^{-1}[b]_n$.

Proof: Suppose $X \in \mathbb{Z}_n$ is a solution of the equation. Then $[a]_n^{-1}([a]_nX) = [a]_n^{-1}[b]_n$. We have $[a]_n^{-1}([a]_nX) = ([a]_n^{-1}[a]_n)X = [1]_nX = X$. Conversely, if $X = [a]_n^{-1}[b]_n$, then $[a]_nX = [a]_n([a]_n^{-1}[b]_n) = ([a]_n[a]_n^{-1})[b]_n = [1]_n[b]_n = [b]_n$.

Problem 1. Solve the congruence $23x \equiv 6 \mod 107$.

The numbers 23 and 107 are coprime. We know from the previous lecture that $[23]_{107}^{-1} = [14]_{107}$. Hence $[x]_{107} = [23]_{107}^{-1}[6]_{107} = [14]_{107}[6]_{107} = [84]_{107}$.

Problem 2. Solve the congruence $3x \equiv 5 \mod 15$.

The congruence has no solutions. Indeed, $3x - 5 \equiv 1 \mod 3$ so that 3x - 5 is never divisible by 3. As a consequence, 3x - 5 is not divisible by 15.

Problem 3. Solve the congruence $3x \equiv 6 \mod 15$.

Checking all 15 elements of \mathbb{Z}_{15} , we find solutions: $x \equiv 2 \mod 15$, $x \equiv 7 \mod 15$, and $x \equiv 12 \mod 15$. Equivalently, x is a solution if and only if $x \equiv 2 \mod 5$.

More properties of congruences

Proposition 1 Let $a, b \in \mathbb{Z}$ and $c, n \in \mathbb{P}$. Then the congruence $ac \equiv bc \mod nc$ is equivalent to $a \equiv b \mod n$.

Indeed, $ac \equiv bc \mod nc$ means that $\frac{ac - bc}{nc}$ is an integer while $a \equiv b \mod n$ means that $\frac{a - b}{n}$ is an integer.

Proposition 2 Let $a, b \in \mathbb{Z}$ and $c, n \in \mathbb{P}$. If $ac \equiv bc \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.

Indeed, $ac \equiv bc \mod n$ means that ac - bc = (a - b)c is divisible by n. Since gcd(c, n) = 1, it follows that a - b is divisible by n.

Theorem The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d = \gcd(a, n)$ divides b. If this is the case then the solution set consists of d congruence classes modulo n that form a single congruence class modulo n/d.

Proof: If the congruence has a solution x, then ax = b + kn for some $k \in \mathbb{Z}$. Hence b = ax - kn, which is divisible by gcd(a, n).

Conversely, assume that d divides b. Then the linear congruence is equivalent to $a'x \equiv b' \mod m$, where a' = a/d, b' = b/d and m = n/d. In other words, $[a']_m X = [b']_m$, where $X = [x]_m$.

We have gcd(a', m) = gcd(a/d, n/d) = gcd(a, n)/d = 1. Hence the congruence class $[a']_m$ is invertible. By a previously proved theorem, all solutions x of the linear congruence form a single congruence class modulo m, $X = [a']_m^{-1}[b']_m$. This congruence class splits into d distinct congruence classes modulo n = md. **Problem.** Solve the congruence $12x \equiv 6 \mod 21$.

$$\iff 4x \equiv 2 \mod 7 \iff 2x \equiv 1 \mod 7$$
$$\iff [x]_7 = [2]_7^{-1} = [4]_7$$
$$\iff [x]_{21} = [4]_{21} \text{ or } [11]_{21} \text{ or } [18]_{21}.$$

Problem. Find all integer solutions of the equation 12x - 21y = 6.

For any integer solution of the equation, the number x is a solution of the linear congruence $12x \equiv 6 \mod 21$. By the above, $x \equiv 4 \mod 7$, that is, x = 4 + 7k for some $k \in \mathbb{Z}$. Then y = (12x - 6)/21 = (12(4 + 7k) - 6)/21= (42 + 84k)/21 = 2 + 4k, which is also integer. Thus the general integer solution is x = 4 + 7k, y = 2 + 4k, where $k \in \mathbb{Z}$.