MATH 433
Applied Algebra

Lecture 11:
Euler’s Theorem.
Euler’s phi-function.



Order of a congruence class

A congruence class [a], has finite order if [a]k = [1], for
some integer k > 1. The smallest k with this property is
called the order of [a],. We also say that k is the order of a
modulo n.

Theorem A congruence class [a], has finite order if and only
if it is invertible, i.e., if ged(a, n) = 1.

Proposition Let k be the order of an integer a modulo n.
Then a®* = 1modn if and only if s is a multiple of k.

Fermat’s Little Theorem Let p be a prime number. Then
a’~! = 1modp for every integer a not divisible by p.

Corollary Let a be an integer not divisible by a prime number
p. Then the order of a modulo p is a divisor of p — 1.



Euler’s Theorem

Z.,: the set of all congruence classes modulo n.
G,: the set of all invertible congruence classes
modulo n.

Theorem (Euler) Let n>2 and ¢(n) be the
number of elements in G,. Then

2®(" = 1modn

for every integer a coprime with n.

Corollary Let a be an integer coprime with an
integer n > 2. Then the order of a modulo n is a
divisor of ¢(n).



Proof of Euler’s Theorem

Proof: Let [by],[b2],. .., [bm] be the list of all elements of
G,. Note that m = ¢(n). Consider another list:

[a][b], [a][bo], - - -, [a][bwm].
Since gcd(a, n) = 1, the congruence class [a], is in G, as well.
Hence the second list also consists of elements from G,. Also,
all elements in the second list are distinct as

[a][b] = [al[b'] = [a] *[a][b] = [a] *[al[b'] = [b] = [V'].
It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[a][b1] - [a][b2] - - - [a][bm] = [ba] - [b2] - - - [Bm] -
Hence [a]"X = X, where X = [b1] - [ba] - - - [bm]-
Note that X € G,, since G, is closed under multiplication.
That is, X is invertible. Then [a]"XX™1 = XX~1
= [a]™[1] = [1] = [a™] =[1]. Recall that m = ¢(n).



Euler’s phi function

The number of elements in G, the set of invertible
congruence classes modulo n, is denoted ¢(n). In
other words, ¢(n) counts how many of the numbers
1,2,...,n are coprime with n. ¢(n) is called
Euler’s ¢-function or Euler’s totient function.

Problem. Compute ¢(100).

Since 100 = 22-52, an integer k is coprime with 100 if and
only if it is not divisible by 2 or 5. Among integers from 1 to
100, there are 50 = 100/2 even numbers and 20 = 100/5
numbers divisible by 5. Note that some of them are divisible
by both 2 and 5. These are exactly numbers divisible by 10.
There are 10 = 100/10 such numbers. We conclude that
¢(100) = 100 — 50 — 20 + 10 = 40.



Euler’s phi function

The number of elements in G,,, the set of invertible
congruence classes modulo n, is denoted ¢(n). In other
words, ¢(n) counts how many of the numbers 1,2 ... n are
coprime with n. ¢(n) is called Euler’s ¢-function or Euler’s
totient function.

Proposition 1 If p is prime, then ¢(p°) = p* — p5L.
Proposition 2 If gcd(m, n) =1, then ¢(mn) = ¢(m) ¢(n).

Theorem Let n= pi'ps*...p~, where p1,po,...,px are
distinct primes and sy, ..., s, are positive integers. Then

¢(n) = piH(pr = )3 (P2 — 1) pr Pk — 1).

Sketch of the proof: The proof is by induction on k. The
base of induction is Proposition 1. The induction step relies
on Proposition 2.



Proposition If gcd(m, n) =1, then ¢(mn) = ¢(m) ¢(n).

Proof: Let Z,, X Z, denote the set of all pairs (X, Y) such
that X € Z,, and Y € Z,. We define a function
f:Zmn—> Lm X Z, by the formula f([a]m,) = ([a]m, [a]n)-

Since m and n divide mn, this function is well defined (does
not depend on the choice of the representative a). Since
gcd(m, n) =1, the Chinese Remainder Theorem implies that
this function establishes a one-to-one correspondence between
the sets Z,, and Z,, X Z,,.

Furthermore, an integer a is coprime with mn if and only if it
is coprime with m and with n. Therefore the function f also
establishes a one-to-one correspondence between G,,, and

Gm X G, the latter being the set of pairs (X, Y) such that
X € G, and Y € G,. In other words, f(Gp,) = Gy X G,
It follows that the sets G,,, and G,, X G, consist of the same
number of elements. Thus ¢(mn) = ¢(m) ¢(n).



Examples. ¢(11) = 10,

#(25) = ¢(5%) =5 - 4 = 20,

$(27) = ¢(33) =322 =18,

#(100) = ¢(2% - 5%) = ¢(2%) $(5%) = 2 - 20 = 40,
$(1001) = ¢(7-11-13) = (7—1)(11-1)(13—-1) = 720,
$(2023) = ¢(7 - 17%) = (7 — 1)(17? — 17) = 1632.

Problem. Determine the last two digits of 32924,

The last two digits form the remainder after division by 100.
Since ¢(100) = 40, we have
3% = 1mod 100.
Then [32024] [3]2024 [3]40 50424 __ ([3]40)50 [3]24 [3]24
= ([3P)* [3]* = [243]* [3]* = [43]* [3]* = [(50 — 7)*]* [3]*
= [7°] [3]* = [49]* [3]* = [(50 — 1)*] [3]* = [1°] [3]* = [81].
Thus 3294 = | 81,



