MATH 433
 Applied Algebra

Lecture 11:

Euler's Theorem.
 Euler's phi-function.

Order of a congruence class

A congruence class $[a]_{n}$ has finite order if $[a]_{n}^{k}=[1]_{n}$ for some integer $k \geq 1$. The smallest k with this property is called the order of $[a]_{n}$. We also say that k is the order of a modulo n.

Theorem A congruence class [a] ${ }_{n}$ has finite order if and only if it is invertible, i.e., if $\operatorname{gcd}(a, n)=1$.

Proposition Let k be the order of an integer a modulo n. Then $a^{s} \equiv 1 \bmod n$ if and only if s is a multiple of k.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \bmod p$ for every integer a not divisible by p.

Corollary Let a be an integer not divisible by a prime number p. Then the order of a modulo p is a divisor of $p-1$.

Euler's Theorem

\mathbb{Z}_{n} : the set of all congruence classes modulo n.
G_{n} : the set of all invertible congruence classes modulo n.

Theorem (Euler) Let $n \geq 2$ and $\phi(n)$ be the number of elements in G_{n}. Then

$$
a^{\phi(n)} \equiv 1 \bmod n
$$

for every integer a coprime with n.
Corollary Let a be an integer coprime with an integer $n \geq 2$. Then the order of a modulo n is a divisor of $\phi(n)$.

Proof of Euler's Theorem

Proof: Let $\left[b_{1}\right],\left[b_{2}\right], \ldots,\left[b_{m}\right]$ be the list of all elements of G_{n}. Note that $m=\phi(n)$. Consider another list:

$$
[a]\left[b_{1}\right],[a]\left[b_{2}\right], \ldots,[a]\left[b_{m}\right] .
$$

Since $\operatorname{gcd}(a, n)=1$, the congruence class $[a]_{n}$ is in G_{n} as well. Hence the second list also consists of elements from G_{n}. Also, all elements in the second list are distinct as

$$
[a][b]=[a]\left[b^{\prime}\right] \Longrightarrow[a]^{-1}[a][b]=[a]^{-1}[a]\left[b^{\prime}\right] \Longrightarrow[b]=\left[b^{\prime}\right] .
$$

It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$
[a]\left[b_{1}\right] \cdot[a]\left[b_{2}\right] \cdots[a]\left[b_{m}\right]=\left[b_{1}\right] \cdot\left[b_{2}\right] \cdots\left[b_{m}\right] .
$$

Hence $[a]^{m} X=X$, where $X=\left[b_{1}\right] \cdot\left[b_{2}\right] \cdots\left[b_{m}\right]$. Note that $X \in G_{n}$ since G_{n} is closed under multiplication. That is, X is invertible. Then $[a]^{m} X X^{-1}=X X^{-1}$ $\Longrightarrow[a]^{m}[1]=[1] \Longrightarrow\left[a^{m}\right]=[1]$. Recall that $m=\phi(n)$.

Euler's phi function

The number of elements in G_{n}, the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers $1,2, \ldots, n$ are coprime with $n . \phi(n)$ is called Euler's ϕ-function or Euler's totient function.

Problem. Compute $\phi(100)$.

Since $100=2^{2} \cdot 5^{2}$, an integer k is coprime with 100 if and only if it is not divisible by 2 or 5 . Among integers from 1 to 100 , there are $50=100 / 2$ even numbers and $20=100 / 5$ numbers divisible by 5 . Note that some of them are divisible by both 2 and 5 . These are exactly numbers divisible by 10 . There are $10=100 / 10$ such numbers. We conclude that $\phi(100)=100-50-20+10=40$.

Euler's phi function

The number of elements in G_{n}, the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers $1,2, \ldots, n$ are coprime with $n . \quad \phi(n)$ is called Euler's ϕ-function or Euler's totient function.

Proposition 1 If p is prime, then $\phi\left(p^{s}\right)=p^{s}-p^{s-1}$.
Proposition 2 If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.
Theorem Let $n=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and s_{1}, \ldots, s_{k} are positive integers. Then

$$
\phi(n)=p_{1}^{s_{1}-1}\left(p_{1}-1\right) p_{2}^{s_{2}-1}\left(p_{2}-1\right) \ldots p_{k}^{s_{k}-1}\left(p_{k}-1\right)
$$

Sketch of the proof: The proof is by induction on k. The base of induction is Proposition 1. The induction step relies on Proposition 2.

Proposition If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.
Proof: Let $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ denote the set of all pairs (X, Y) such that $X \in \mathbb{Z}_{m}$ and $Y \in \mathbb{Z}_{n}$. We define a function $f: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by the formula $f\left([a]_{m n}\right)=\left([a]_{m},[a]_{n}\right)$.
Since m and n divide $m n$, this function is well defined (does not depend on the choice of the representative a). Since $\operatorname{gcd}(m, n)=1$, the Chinese Remainder Theorem implies that this function establishes a one-to-one correspondence between the sets $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
Furthermore, an integer a is coprime with $m n$ if and only if it is coprime with m and with n. Therefore the function f also establishes a one-to-one correspondence between $G_{m n}$ and $G_{m} \times G_{n}$, the latter being the set of pairs (X, Y) such that $X \in G_{m}$ and $Y \in G_{n}$. In other words, $f\left(G_{m n}\right)=G_{m} \times G_{n}$. It follows that the sets $G_{m n}$ and $G_{m} \times G_{n}$ consist of the same number of elements. Thus $\phi(m n)=\phi(m) \phi(n)$.

Examples. $\phi(11)=10$,
$\phi(25)=\phi\left(5^{2}\right)=5 \cdot 4=20$,
$\phi(27)=\phi\left(3^{3}\right)=3^{2} \cdot 2=18$,
$\phi(100)=\phi\left(2^{2} \cdot 5^{2}\right)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)=2 \cdot 20=40$,
$\phi(1001)=\phi(7 \cdot 11 \cdot 13)=(7-1)(11-1)(13-1)=720$,
$\phi(2023)=\phi\left(7 \cdot 17^{2}\right)=(7-1)\left(17^{2}-17\right)=1632$.
Problem. Determine the last two digits of 3^{2024}.
The last two digits form the remainder after division by 100 .
Since $\phi(100)=40$, we have

$$
3^{40} \equiv 1 \bmod 100
$$

Then $\left[3^{2024}\right]=[3]^{2024}=[3]^{40 \cdot 50+24}=\left([3]^{40}\right)^{50}[3]^{24}=[3]^{24}$

$$
\begin{aligned}
& =\left([3]^{5}\right)^{4}[3]^{4}=[243]^{4}[3]^{4}=[43]^{4}[3]^{4}=\left[(50-7)^{2}\right]^{2}[3]^{4} \\
& =\left[7^{2}\right]^{2}[3]^{4}=[49]^{2}[3]^{4}=\left[(50-1)^{2}\right][3]^{4}=\left[1^{2}\right][3]^{4}=[81] .
\end{aligned}
$$

Thus $3^{2024}=\ldots 81$.

