
MATH 433

Applied Algebra

Lecture 24:
Rings and fields.



Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an Abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all x , y ∈ R , x + y is an element of R ;
(R2) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(R3) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(R4) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(R5) x + y = y + x for all x , y ∈ R ;
(R6) for all x , y ∈ R , xy is an element of R ;
(R7) (xy)z = x(yz) for all x , y , z ∈ R ;
(R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Examples of rings

Informally, a ring is a set with three arithmetic operations:
addition, subtraction and multiplication. Subtraction is
defined by x − y = x + (−y ).

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• All functions f : S → R on a nonempty set S .

• Zero (multiplication) ring: any additive Abelian group
with trivial multiplication: xy = 0 for all x and y .

• Trivial ring {0}.



Examples of rings

In examples below, real numbers R can be replaced by a more
general ring of coefficients.

• R[X ]: polynomials in variable X with real coefficients.
p(X ) = c0 + c1X + c2X

2 + · · ·+ cnX
n, where each ci ∈ R.

• R(X ): rational functions in variable X with real coefficients.

r(X ) = a0+a1X+a2X
2+···+anX

n

b0+b1X+b2X 2+···+bmXm , where ai , bj ∈ R and bm 6= 0.

• R[X ,Y ]: polynomials in variables X ,Y with real
coefficients.
R[X ,Y ] = R[X ][Y ].

• R[[X ]]: formal power series in variable X with real
coefficients.
p(X ) = c0 + c1X + c2X

2 + · · ·+ cnX
n + . . . , where ci ∈ R.

Multiplication is well defined. For example,

(1− X )(1 + X + X 2 + X 3 + X 4 + . . . ) = 1.



Example. Let M be the set of all 2×2 matrices of the form
(

x −y

y x

)

, where x , y ∈ R.

(

x −y

y x

)

+

(

x ′ −y ′

y ′ x ′

)

=

(

x + x ′ −(y + y ′)
y + y ′ x + x ′

)

,

−

(

x −y

y x

)

=

(

−x −(−y )
−y −x

)

,

(

x −y

y x

)(

x ′ −y ′

y ′ x ′

)

=

(

xx ′ − yy ′ −(xy ′ + yx ′)
xy ′ + yx ′ xx ′ − yy ′

)

.

Hence M is closed under matrix addition, taking the negative,
and matrix multiplication. Also, the multiplication is
commutative on M . The associativity and commutativity of
the addition, the associativity of the multiplication, and the
distributive law hold on M since they hold for all 2×2
matrices. Thus M is a commutative ring.

Remark. M is the ring of complex numbers x + yi “in disguise”.



Basic properties of rings

Let R be a ring.

• The zero 0 ∈ R is unique.

• For any x ∈ R, the negative −x is unique.

• −(−x) = x for all x ∈ R.

• x0 = 0x = 0 for all x ∈ R.

• (−x)y = x(−y) = −xy for all x , y ∈ R.

• (−x)(−y) = xy for all x , y ∈ R.

• x(y − z) = xy − xz for all x , y , z ∈ R.

• (y − z)x = yx − zx for all x , y , z ∈ R.



Divisors of zero

Theorem Let R be a ring. Then x0 = 0x = 0 for all x ∈ R .

Proof: Let y = x0. Then y + y = x0 + x0 = x(0 + 0)
= x0 = y . It follows that (−y ) + y + y = (−y ) + y , hence
y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a left zero-divisor if
xy = 0 for another nonzero element y ∈ R . The element y is
called a right zero-divisor.

Examples. • In the ring Z6, the zero-divisors are congruence
classes [2]6, [3]6, and [4]6, as [2]6[3]6 = [4]6[3]6 = [0]6.

• In the ring Mn(R), the zero-divisors (both left and right)
are nonzero matrices with zero determinant. For instance,
(

1 0
0 0

)(

0 0
0 1

)

=

(

0 0
0 0

)

,

(

0 1
0 0

)2

=

(

0 0
0 0

)

.

• In any zero ring, all nonzero elements are zero-divisors.



Integral domains

A ring R is called a domain if it has no zero-divisors.

Theorem Given a nontrivial ring R , the following are
equivalent:
• R is a domain,
• R \ {0} is a semigroup under multiplication,
• R \ {0} is a semigroup with cancellation under

multiplication.

Idea of the proof: No zero-divisors means that R \ {0} is
closed under multiplication. Further, if a 6= 0 then ab = ac

=⇒ a(b − c) = 0 =⇒ b − c = 0 =⇒ b = c.

A ring R is called commutative if the multiplication is
commutative. R is called a ring with unity if there exists an
identity element for multiplication (the unity), denoted 1.

An integral domain is a nontrivial commutative ring with
unity and no zero-divisors.



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an Abelian group under addition,
• F \ {0} is an Abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



From rings to fields

Theorem Any finite integral domain is, in fact, a
field.

Theorem A ring R with unity can be extended to

a field if and only if it is an integral domain.

If R is an integral domain, then there is a smallest
field F containing R called the quotient field of R.

Any element of F is of the form b−1a, where
a, b ∈ R.

Examples. • The quotient field of Z is Q.

• The quotient field of R[X ] is R(X ).


