MATH 433 Applied Algebra

Lecture 24: Rings and fields.

Groups

Definition. A group is a set *G*, together with a binary operation ∗, that satisfies the following axioms:

(G1: closure)

for all elements *g* and *h* of *G*, *g* ∗ *h* is an element of *G*;

(G2: associativity)

 $(g * h) * k = g * (h * k)$ for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of *G*, such that $e * g = g * e = g$ for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of *g*, such that $g * h = h * g = e$.

The group $(G, *)$ is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) $g * h = h * g$ for all $g, h \in G$.

Semigroups

Definition. A semigroup is a nonempty set *S*, together with a binary operation ∗, that satisfies the following axioms:

(S1: closure)

for all elements *g* and *h* of *S*, *g* ∗ *h* is an element of *S*;

(S2: associativity)

 $(g * h) * k = g * (h * k)$ for all $g, h, k \in S$.

The semigroup $(S, *)$ is said to be a **monoid** if it satisfies an additional axiom:

(S3: existence of identity) there exists an element $e \in S$ such that $e * g = g * e = g$ for all $g \in S$.

Optional useful properties of semigroups:

(S4: cancellation) $g * h_1 = g * h_2$ implies $h_1 = h_2$ and $h_1 * g = h_2 * g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$. **(S5: commutativity)** $g * h = h * g$ for all $g, h \in S$.

Rings

Definition. A ring is a set *R*, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- *R* is an Abelian group under addition,
- *R* is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows: **(R1)** for all $x, y \in R$, $x + y$ is an element of R; (R2) $(x + y) + z = x + (y + z)$ for all $x, y, z \in R$; $(R3)$ there exists an element, denoted 0, in R such that $x + 0 = 0 + x = x$ for all $x \in R$: **(R4)** for every $x \in R$ there exists an element, denoted $-x$, in R such that $x + (-x) = (-x) + x = 0$; (R5) $x + y = y + x$ for all $x, y \in R$; **(R6)** for all $x, y \in R$, xy is an element of R; (R7) $(xy)z = x(yz)$ for all $x, y, z \in R$; (R8) $x(y+z) = xy+xz$ and $(y+z)x = yx+zx$ for all $x, y, z \in R$.

Examples of rings

Informally, a ring is a set with three arithmetic operations: addition, subtraction and multiplication. Subtraction is defined by $x - y = x + (-y)$.

- Real numbers $\mathbb R$
- \bullet Integers \mathbb{Z} .
- $2\mathbb{Z}$: even integers.
- Zn: congruence classes modulo *n*.
- $M_n(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $M_n(\mathbb{Z})$: all $n \times n$ matrices with integer entries.
- All functions $f : S \to \mathbb{R}$ on a nonempty set S.

• Zero (multiplication) ring: any additive Abelian group with trivial multiplication: $xy = 0$ for all x and y.

• Trivial ring $\{0\}$.

Examples of rings

In examples below, real numbers $\mathbb R$ can be replaced by a more general ring of coefficients.

• R[*X*]: polynomials in variable *X* with real coefficients. $p(X) = c_0 + c_1X + c_2X^2 + \cdots + c_nX^n$, where each $c_i \in \mathbb{R}$.

• $\mathbb{R}(X)$: rational functions in variable X with real coefficients. $r(X) = \frac{a_0 + a_1X + a_2X^2 + \dots + a_nX^n}{b_0 + b_1X + b_2X^2 + \dots + b_mX^m}$, where $a_i, b_j \in \mathbb{R}$ and $b_m \neq 0$.

• $\mathbb{R}[X, Y]$: polynomials in variables X, Y with real coefficients.

 $\mathbb{R}[X, Y] = \mathbb{R}[X][Y].$

• R[[*X*]]: formal power series in variable *X* with real coefficients.

 $p(X) = c_0 + c_1 X + c_2 X^2 + \cdots + c_n X^n + \ldots$, where $c_i \in \mathbb{R}$. Multiplication is well defined. For example,

$$
(1 - X)(1 + X + X2 + X3 + X4 + ...) = 1.
$$

 $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, where $x, y \in \mathbb{R}$. **Example.** Let M be the set of all 2×2 matrices of the form

$$
\begin{pmatrix} x & -y \ y & x \end{pmatrix} + \begin{pmatrix} x' & -y' \ y' & x' \end{pmatrix} = \begin{pmatrix} x + x' & -(y + y') \ y + y' & x + x' \end{pmatrix},
$$

$$
-\begin{pmatrix} x & -y \ y & x \end{pmatrix} = \begin{pmatrix} -x & -(-y) \ -y & -x \end{pmatrix},
$$

$$
\begin{pmatrix} x & -y \ y & x' \end{pmatrix} \begin{pmatrix} x' & -y' \ y' & x' \end{pmatrix} = \begin{pmatrix} xx' - yy' & -(xy' + yx') \ xy' & xx' - yy' \end{pmatrix}.
$$

Hence *M* is closed under matrix addition, taking the negative, and matrix multiplication. Also, the multiplication is commutative on *M*. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus *M* is a commutative ring.

Remark. M is the ring of complex numbers $x + yi$ "in disguise".

Basic properties of rings

Let *R* be a ring.

- The zero $0 \in R$ is unique.
- For any $x \in R$, the negative $-x$ is unique.

$$
\bullet \quad -(-x) = x \text{ for all } x \in R.
$$

•
$$
x0 = 0x = 0
$$
 for all $x \in R$.

•
$$
(-x)y = x(-y) = -xy
$$
 for all $x, y \in R$.

- $(-x)(-y) = xy$ for all $x, y \in R$.
- $x(y z) = xy xz$ for all $x, y, z \in R$.

•
$$
(y-z)x = yx - zx
$$
 for all $x, y, z \in R$.

Divisors of zero

Theorem Let *R* be a ring. Then $x0 = 0x = 0$ for all $x \in R$. *Proof:* Let $v = x0$. Then $v + v = x0 + x0 = x(0 + 0)$ $= x0 = y$. It follows that $(-y) + y + y = (-y) + y$, hence $y = 0$. Similarly, one shows that $0x = 0$.

A nonzero element *x* of a ring *R* is a left zero-divisor if $xy = 0$ for another nonzero element $y \in R$. The element *y* is called a right zero-divisor.

Examples. • In the ring \mathbb{Z}_6 , the zero-divisors are congruence classes $[2]_6$, $[3]_6$, and $[4]_6$, as $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$. • In the ring $\mathcal{M}_n(\mathbb{R})$, the zero-divisors (both left and right) are nonzero matrices with zero determinant. For instance, $\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} =$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\left(\begin{matrix} 0 & 1 \ 0 & 0 \end{matrix}\right)^2 =$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. • In any zero ring, all nonzero elements are zero-divisors.

Integral domains

A ring *R* is called a domain if it has no zero-divisors.

Theorem Given a nontrivial ring *R*, the following are equivalent:

- *R* is a domain,
- $R \setminus \{0\}$ is a semigroup under multiplication,
- $R \setminus \{0\}$ is a semigroup with cancellation under multiplication.

Idea of the proof: No zero-divisors means that $R \setminus \{0\}$ is closed under multiplication. Further, if $a \neq 0$ then $ab = ac$ \implies $a(b-c) = 0 \implies b-c = 0 \implies b = c.$

A ring *R* is called commutative if the multiplication is commutative. *R* is called a ring with unity if there exists an identity element for multiplication (the unity), denoted 1. An **integral domain** is a nontrivial commutative ring with unity and no zero-divisors.

Fields

Definition. A field is a set *F*, together with two binary operations called addition and multiplication and denoted accordingly, such that

- *F* is an Abelian group under addition,
- $F \setminus \{0\}$ is an Abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with unity $(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. • Real numbers R.

- Rational numbers Q.
- Complex numbers C.
- \mathbb{Z}_p : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

From rings to fields

Theorem Any finite integral domain is, in fact, a field.

Theorem A ring *R* with unity can be extended to a field if and only if it is an integral domain.

If *R* is an integral domain, then there is a smallest field *F* containing *R* called the quotient field of *R*. Any element of F is of the form $\,b^{-1}a,\,$ where $a, b \in R$.

Examples. • The quotient field of $\mathbb Z$ is $\mathbb O$.

• The quotient field of $\mathbb{R}[X]$ is $\mathbb{R}(X)$.