Applied Algebra

Properties of groups.

Lecture 27:

MATH 433

Order of an element in a group.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g*h is an element of G;

(G2: associativity)

$$(g*h)*k = g*(h*k)$$
 for all $g,h,k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic properties of groups

- The identity element is unique.
- The inverse element is unique.
- $(g^{-1})^{-1} = g$. In other words, $h = g^{-1}$ if and only if $g = h^{-1}$.
 - $(gh)^{-1} = h^{-1}g^{-1}$.
 - $(g_1g_2...g_n)^{-1}=g_n^{-1}...g_2^{-1}g_1^{-1}.$
- Cancellation properties: $gh_1 = gh_2 \implies h_1 = h_2$ and $h_1g = h_2g \implies h_1 = h_2$.
- If hg = g or gh = g for some $g \in G$, then h is the identity element.
 - $gh = e \iff hg = e \iff h = g^{-1}$.

Equations in groups

Theorem Let G be a group. For any $a, b, c \in G$,

- the equation ax = b has a unique solution $x = a^{-1}b$;
- the equation ya = b has a unique solution $y = ba^{-1}$;
- the equation azc = b has a unique solution $z = a^{-1}bc^{-1}$.

Problem. Solve an equation in the group S(5): $(1\ 2\ 4)(3\ 5)\pi(2\ 3\ 4\ 5)=(1\ 5)$.

Solution:
$$\pi = ((1\ 2\ 4)(3\ 5))^{-1}(1\ 5)(2\ 3\ 4\ 5)^{-1}$$

= $(3\ 5)^{-1}(1\ 2\ 4)^{-1}(1\ 5)(2\ 3\ 4\ 5)^{-1}$
= $(5\ 3)(4\ 2\ 1)(1\ 5)(5\ 4\ 3\ 2) = (1\ 3)(2\ 4\ 5)$.

Powers of an element in a group

Let g be an element of a group G (with multiplicative notation). The positive **powers** of g are defined inductively:

$$g^1 = g$$
 and $g^{k+1} = g^k g$ for every integer $k \ge 1$.

The negative powers of g are defined as the positive powers of its inverse: $g^{-k} = (g^{-1})^k$ for every positive integer k. Finally, we set $g^0 = e$.

Theorem Let g be an element of a group G and $r, s \in \mathbb{Z}$. Then (i) $g^r g^s = g^{r+s}$ and (ii) $(g^r)^s = g^{rs}$.

Idea of the proof: The case r,s>0 was settled before in a more general context of semigroups. The case when r=0 or s=0 is trivial. The case when r<0 or s<0 is reduced to the case of positive r,s using the following lemma.

Lemma $(g^k)^{-1} = g^{-k}$ for all k > 0.

Corollary All powers of g commute with one another: $g^rg^s = g^sg^r$ for all $r, s \in \mathbb{Z}$.

Order of an element

Let g be an element of a group G. We say that g has **finite** order if $g^n = e$ for some positive integer n.

If this is the case, then the smallest positive integer n with this property is called the **order** of g and denoted o(g).

Otherwise g is said to have the **infinite order**, $o(g) = \infty$.

Theorem If G is a finite group, then every element of G has finite order.

Proof: Let $g \in G$ and consider the list of powers: g, g^2, g^3, \ldots Since all elements in this list belong to the finite set G, there must be repetitions within the list. Assume that $g^r = g^s$ for some r and s, 0 < r < s. Then $g^r e = g^r g^{s-r} \implies g^{s-r} = e$ due to the cancellation property.

Theorem 1 Let G be a group and $g \in G$ be an element of finite order n. Then $g^r = g^s$ if and only if $r \equiv s \mod n$. In particular, $g^r = e$ if and only if the order n divides r.

Theorem 2 Let G be a group and $g \in G$ be an element of infinite order. Then $g^r \neq g^s$ whenever $r \neq s$.

Theorem 3 $o(g^{-1}) = o(g)$ for all $g \in G$.

Proof: $(g^{-1})^n = g^{-n} = (g^n)^{-1}$ for any integer $n \ge 1$. Since $e^{-1} = e$, it follows that $(g^{-1})^n = e$ if and only if $g^n = e$.

Theorem 4 Let g and h be two commuting elements of a group G: gh = hg. Then

(i) the powers g^r and h^s commute for all $r, s \in \mathbb{Z}$, (ii) $(gh)^r = g^r h^r$ for all $r \in \mathbb{Z}$.

Theorem 5 Let G be a group and $g, h \in G$ be two commuting elements of finite order. Then gh also has a finite order. Moreover, o(gh) divides lcm(o(g), o(h)).

Examples

• G = S(10), $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$, $h = (7 \ 8 \ 9 \ 10)$. g and h are disjoint cycles, in particular, gh = hg. We have o(g) = 6, o(h) = 4, and o(gh) = lcm(o(g), o(h)) = 12.

• G = S(6), $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$, $h = (1 \ 3 \ 5)(2 \ 4 \ 6)$.

Notice that $h = g^2$. Hence $gh = hg = g^3 = (1 \ 4)(2 \ 5)(3 \ 6)$. We have o(g) = 6, o(h) = 3, and o(gh) = 2 < lcm(o(g), o(h)).

• G = S(5), $g = (1\ 2\ 3)$, $h = (3\ 4\ 5)$. $gh = (1\ 2\ 3\ 4\ 5)$, $hg = (4\ 5\ 3)(3\ 1\ 2) = (4\ 5\ 3\ 1\ 2) \neq gh$. We have o(g) = o(h) = 3 while o(gh) = o(hg) = 5.

Conjugacy

Definition. Given $g_1, g_2 \in G$, we say that the element g_1 is **conjugate** to g_2 if $g_1 = hg_2h^{-1}$ for some $h \in G$. The **conjugacy** is an equivalence relation on the group G.

Theorem Conjugate elements have the same order.

Proof: Let $g_1, g_2 \in G$ and suppose g_1 is conjugate to g_2 , $g_1 = hg_2h^{-1}$ for some $h \in G$. Then $g_1^2 = hg_2h^{-1}hg_2h^{-1} = hg_2^2h^{-1}$, $g_1^3 = g_1g_1^2 = hg_2h^{-1}hg_2^2h^{-1} = hg_2^3h^{-1}$, and so on...

By induction, $g_1^n=hg_2^nh^{-1}$ for all $n\geq 1$. If $g_2^n=e$ then $g_1^n=heh^{-1}=hh^{-1}=e$. It follows that $o(g_1)\leq o(g_2)$. Since g_2 is conjugate to g_1 as well, $g_2=h^{-1}g_1(h^{-1})^{-1}$, we also have $o(g_2)\leq o(g_1)$. Thus $o(g_1)=o(g_2)$.

Corollary o(gh) = o(hg) for all $g, h \in G$. *Proof:* The element gh is conjugate to hg, $gh = g(hg)g^{-1}$.