MATH 433
Applied Algebra
Lecture 27:
Properties of groups.
Order of an element in a group.

## Groups

Definition. A group is a set $G$, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements $g$ and $h$ of $G, g * h$ is an element of $G$;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of $G$, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse)
for every $g \in G$ there exists an element $h \in G$, called the inverse of $g$, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

## Basic properties of groups

- The identity element is unique.
- The inverse element is unique.
- $\left(g^{-1}\right)^{-1}=g$. In other words, $h=g^{-1}$ if and only if $g=h^{-1}$.
- $(g h)^{-1}=h^{-1} g^{-1}$.
- $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} \ldots g_{2}^{-1} g_{1}^{-1}$.
- Cancellation properties: $g h_{1}=g h_{2} \Longrightarrow$
$h_{1}=h_{2}$ and $h_{1} g=h_{2} g \Longrightarrow h_{1}=h_{2}$.
- If $h g=g$ or $g h=g$ for some $g \in G$, then $h$ is the identity element.
- $g h=e \Longleftrightarrow h g=e \Longleftrightarrow h=g^{-1}$.


## Equations in groups

Theorem Let $G$ be a group. For any $a, b, c \in G$,

- the equation $a x=b$ has a unique solution $x=a^{-1} b$;
- the equation $y a=b$ has a unique solution $y=b a^{-1}$;
- the equation $a z c=b$ has a unique solution $z=a^{-1} b c^{-1}$.

Problem. Solve an equation in the group $S(5)$ : $(124)(35) \pi(2345)=(15)$.
Solution: $\pi=\left(\left(\begin{array}{ll}1 & 2\end{array}\right)(35)\right)^{-1}(15)(2345)^{-1}$

$$
\begin{aligned}
& =(35)^{-1}(124)^{-1}(15)(2345)^{-1} \\
& =\left(\begin{array}{ll}
5 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 1
\end{array}\right)\left(\begin{array}{l}
15
\end{array}\right)\left(\begin{array}{ll}
5 & 4 \\
3
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(245) .
\end{aligned}
$$

## Powers of an element in a group

Let $g$ be an element of a group $G$ (with multiplicative notation). The positive powers of $g$ are defined inductively:

$$
g^{1}=g \text { and } g^{k+1}=g^{k} g \text { for every integer } k \geq 1 .
$$

The negative powers of $g$ are defined as the positive powers of its inverse: $g^{-k}=\left(g^{-1}\right)^{k}$ for every positive integer $k$.
Finally, we set $g^{0}=e$.
Theorem Let $g$ be an element of a group $G$ and $r, s \in \mathbb{Z}$. Then (i) $g^{r} g^{s}=g^{r+s}$ and (ii) $\left(g^{r}\right)^{s}=g^{r s}$. Idea of the proof: The case $r, s>0$ was settled before in a more general context of semigroups. The case when $r=0$ or $s=0$ is trivial. The case when $r<0$ or $s<0$ is reduced to the case of positive $r, s$ using the following lemma.
Lemma $\left(g^{k}\right)^{-1}=g^{-k}$ for all $k>0$.
Corollary All powers of $g$ commute with one another: $g^{r} g^{s}=g^{s} g^{r}$ for all $r, s \in \mathbb{Z}$.

## Order of an element

Let $g$ be an element of a group $G$. We say that $g$ has finite order if $g^{n}=e$ for some positive integer $n$.
If this is the case, then the smallest positive integer $n$ with this property is called the order of $g$ and denoted $o(g)$.
Otherwise $g$ is said to have the infinite order, $o(g)=\infty$.

Theorem If $G$ is a finite group, then every element of $G$ has finite order.

Proof: Let $g \in G$ and consider the list of powers: $g, g^{2}, g^{3}, \ldots$ Since all elements in this list belong to the finite set $G$, there must be repetitions within the list. Assume that $g^{r}=g^{s}$ for some $r$ and $s, 0<r<s$. Then $g^{r} e=g^{r} g^{s-r} \Longrightarrow g^{s-r}=e$ due to the cancellation property.

Theorem 1 Let $G$ be a group and $g \in G$ be an element of finite order $n$. Then $g^{r}=g^{s}$ if and only if $r \equiv s \bmod n$. In particular, $g^{r}=e$ if and only if the order $n$ divides $r$.

Theorem 2 Let $G$ be a group and $g \in G$ be an element of infinite order. Then $g^{r} \neq g^{s}$ whenever $r \neq s$.

Theorem $3 o\left(g^{-1}\right)=o(g)$ for all $g \in G$.
Proof: $\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}$ for any integer $n \geq 1$. Since $e^{-1}=e$, it follows that $\left(g^{-1}\right)^{n}=e$ if and only if $g^{n}=e$.

Theorem 4 Let $g$ and $h$ be two commuting elements of a group $G: g h=h g$. Then
(i) the powers $g^{r}$ and $h^{s}$ commute for all $r, s \in \mathbb{Z}$,
(ii) $(g h)^{r}=g^{r} h^{r}$ for all $r \in \mathbb{Z}$.

Theorem 5 Let $G$ be a group and $g, h \in G$ be two commuting elements of finite order. Then $g h$ also has a finite order. Moreover, $o(g h)$ divides $\operatorname{lcm}(o(g), o(h))$.

## Examples

- $G=S(10), g=(123456), h=(78910)$.
$g$ and $h$ are disjoint cycles, in particular, $g h=h g$.
We have $o(g)=6, o(h)=4$, and
$o(g h)=\operatorname{lcm}(o(g), o(h))=12$.
- $G=S(6), g=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 6\end{array}\right)$,
$h=\left(\begin{array}{ll}1 & 3\end{array}\right)(246)$.
Notice that $h=g^{2}$. Hence $g h=h g=g^{3}=\left(\begin{array}{ll}14\end{array}\right)(25)(36)$.
We have $o(g)=6, o(h)=3$, and
$o(g h)=2<\operatorname{lcm}(o(g), o(h))$.
- $G=S(5), g=\left(\begin{array}{ll}1 & 2\end{array}\right), h=\left(\begin{array}{ll}3 & 4\end{array}\right)$.
$g h=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right), \quad h g=\left(\begin{array}{lll}4 & 5\end{array}\right)\left(\begin{array}{ll}3 & 1\end{array}\right)=\left(\begin{array}{lll}4 & 5 & 1\end{array}\right) \neq g h$.
We have $o(g)=o(h)=3$ while $o(g h)=o(h g)=5$.


## Conjugacy

Definition. Given $g_{1}, g_{2} \in G$, we say that the element $g_{1}$ is conjugate to $g_{2}$ if $g_{1}=h g_{2} h^{-1}$ for some $h \in G$. The conjugacy is an equivalence relation on the group $G$.

Theorem Conjugate elements have the same order.
Proof: Let $g_{1}, g_{2} \in G$ and suppose $g_{1}$ is conjugate to $g_{2}$, $g_{1}=h g_{2} h^{-1}$ for some $h \in G$. Then

$$
\begin{aligned}
& g_{1}^{2}=h g_{2} h^{-1} h g_{2} h^{-1}=h g_{2}^{2} h^{-1} \\
& g_{1}^{3}=g_{1} g_{1}^{2}=h g_{2} h^{-1} h g_{2}^{2} h^{-1}=h g_{2}^{3} h^{-1}, \text { and so on. } .
\end{aligned}
$$

By induction, $g_{1}^{n}=h g_{2}^{n} h^{-1}$ for all $n \geq 1$. If $g_{2}^{n}=e$ then $g_{1}^{n}=h e h^{-1}=h h^{-1}=e$. It follows that $o\left(g_{1}\right) \leq o\left(g_{2}\right)$. Since $g_{2}$ is conjugate to $g_{1}$ as well, $g_{2}=h^{-1} g_{1}\left(h^{-1}\right)^{-1}$, we also have $o\left(g_{2}\right) \leq o\left(g_{1}\right)$. Thus $o\left(g_{1}\right)=o\left(g_{2}\right)$.

Corollary $o(g h)=o(h g)$ for all $g, h \in G$.
Proof: The element $g h$ is conjugate to $h g, g h=g(h g) g^{-1}$.

