MATH 433
Applied Algebra
Lecture 28:
Subgroups.
Cyclic groups.

Subgroups

Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G. Notation: $H \leq G$.

Proposition If H is a subgroup of G then (i) the identity element in H is the same as the identity element in G;
(ii) for any $g \in H$ the inverse g^{-1} taken in H is the same as the inverse taken in G.
Proof. Let e_{G} be the identity element of G and e_{H} be the identity element of H. Then $e_{G} e_{H}=e_{H}$ in G. Further, $e_{H} e_{H}=e_{H}$ in H (but also in G). Hence $e_{G} e_{H}=e_{H} e_{H}$ in G. By right cancellation in $G, e_{G}=e_{H}$.
Now take any $g \in H$. Let g^{\prime} be the inverse of g in G and $g^{\prime \prime}$ be the inverse of g in H. Then $g^{\prime} g=e_{G}$ in G and $g^{\prime \prime} g=e_{H}=e_{G}$ in H (but also in G). Hence $g^{\prime} g=g^{\prime \prime} g$ in G. By right cancellation in $G, g^{\prime}=g^{\prime \prime}$.

Examples of subgroups: • $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.

- ($\mathbb{Q} \backslash\{0\}, \times$) is a subgroup of $(\mathbb{R} \backslash\{0\}, \times)$.
- The alternating group $A(n)$ is a subgroup of the symmetric group $S(n)$.
- If V_{0} is a subspace of a vector space V, then it is also a subgroup of the additive group V.
- Any group G is a subgroup of itself.
- If e is the identity element of a group G, then $\{e\}$ is the trivial subgroup of G.

Counterexamples: - $\mathbb{R} \backslash\{0\}, \times$) is not a subgroup of $(\mathbb{R},+)$ since the operations do not agree.

- $\left(\mathbb{Z}_{n},+\right)$ is not a subgroup of $(\mathbb{Z},+)$ since \mathbb{Z}_{n} is not a subset of \mathbb{Z} (although every element of \mathbb{Z}_{n} is a subset of \mathbb{Z}).
- $(\mathbb{Z} \backslash\{0\}, \times)$ is not a subgroup of $(\mathbb{R} \backslash\{0\}, \times)$ since ($\mathbb{Z} \backslash\{0\}, \times$) is not a group (it is a subsemigroup).

Theorem Let H be a subset of a group G and define an operation on H by restricting the group operation of G.
Then the following statements are equivalent:
(i) H is a subgroup of G;
(ii) H contains e and is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) H is nonempty and $g, h \in H \Longrightarrow g h^{-1} \in H$.

Proof. (i) \Longrightarrow (ii) If H is a subgroup of G, then $g, h \in H \Longrightarrow g h \in H$ since the operations agree and H satisfies the closure axiom. Further, $e \in H$ since e is also the identity element in H and $g \in H \Longrightarrow g^{-1} \in H$ since g^{-1} is also the inverse of g in H.
(ii) \Longrightarrow (i) By construction, H is a subgroup of G as soon as it is a group. (ii) implies the closure axiom, existence of the identity and the inverse. Associativity is inherited from G.

Theorem Let H be a subset of a group G and define an operation on H by restricting the group operation of G.
Then the following statements are equivalent:
(i) H is a subgroup of G;
(ii) H contains e and is closed under the operation and under taking the inverse, that is, $g, h \in H \Longrightarrow g h \in H$ and $g \in H \Longrightarrow g^{-1} \in H$;
(iii) H is nonempty and $g, h \in H \Longrightarrow g h^{-1} \in H$.

Proof. (ii) \Longrightarrow (iii) is obvious.
(iii) \Longrightarrow (ii) Take any $h \in H$. Then $e=h h^{-1} \in H$ and $h^{-1}=e h^{-1} \in H$. Further, for any $g \in H$ we have $g h=g\left(h^{-1}\right)^{-1} \in H$.

Intersection of subgroups

Theorem 1 Let H_{1} and H_{2} be subgroups of a group G. Then the intersection $H_{1} \cap H_{2}$ is also a subgroup of G.

Proof: The identity element e of G belongs to every subgroup. Hence $e \in H_{1} \cap H_{2}$. In particular, the intersection is nonempty. Now for any elements g and h of the group G, $g, h \in H_{1} \cap H_{2} \Longrightarrow g, h \in H_{1}$ and $g, h \in H_{2}$ $\Longrightarrow g h^{-1} \in H_{1}$ and $g h^{-1} \in H_{2} \Longrightarrow g h^{-1} \in H_{1} \cap H_{2}$.

Theorem 2 Let $H_{\alpha}, \alpha \in A$ be a nonempty collection of subgroups of the same group G (where the index set A may be infinite). Then the intersection $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

Generators of a group

Let S be a set (or a list) of some elements of a group G. The group generated by S, denoted $\langle S\rangle$, is the smallest subgroup of G that contains the set S. The elements of the set S are called generators of the group $\langle S\rangle$.

Theorem 1 The group $\langle S\rangle$ is well defined. Indeed, it is the intersection of all subgroups of G that contain S.

Note that we have at least one subgroup of G containing S, namely, G itself. If it is the only one, i.e., $\langle S\rangle=G$, then S is called a generating set for the group G.
Theorem 2 If S is nonempty, then the group $\langle S\rangle$ consists of all elements of the form $g_{1} g_{2} \ldots g_{k}$, where each g_{i} is either a generator $s \in S$ or the inverse s^{-1} of a generator.
Example. Suppose $S=\{a, b, c\}$. Let $g=a b c^{-1} a$ and $h=b c b a^{-1}$. Then $g h=a b c^{-1} a b c b a^{-1}, h g=b c b^{2} c^{-1} a$, $g^{2}=a b c^{-1} a^{2} b c^{-1} a, g^{-1}=a^{-1} c b^{-1} a^{-1}$.

Cyclic groups

A cyclic group is a group generated by a single element.
Cyclic group: $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$ (in multiplicative notation) or $\langle g\rangle=\{n g: n \in \mathbb{Z}\}$ (in additive notation).
Any cyclic group is Abelian since $g^{k} g^{m}=g^{k+m}=g^{m} g^{k}$ for all $k, m \in \mathbb{Z}$.

If g has finite order n, then the cyclic group $\langle g\rangle$ consists of n elements $g, g^{2}, \ldots, g^{n-1}, g^{n}=e$.
If g is of infinite order, then $\langle g\rangle$ is infinite.
Examples of cyclic groups: $\mathbb{Z}, 3 \mathbb{Z}, \mathbb{Z}_{5}, G_{7}, S(2), A(3)$.
Examples of noncyclic groups: any uncountable group, any non-Abelian group, G_{8} with multiplication, \mathbb{Q} with addition, $\mathbb{Q} \backslash\{0\}$ with multiplication.

Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is

 cyclic as well.Proof: Suppose that G is a cyclic group and H is a subgroup of G. Let g be the generator of $G, G=\left\{g^{n}: n \in \mathbb{Z}\right\}$. Denote by k the smallest positive integer such that $g^{k} \in H$ (if there is no such integer then $H=\{e\}$, which is a cyclic group). We are going to show that $H=\left\langle g^{k}\right\rangle$.
Since $g^{k} \in H$, it follows that $\left\langle g^{k}\right\rangle \subset H$. Let us show that $H \subset\left\langle g^{k}\right\rangle$. Take any $h \in H$. Then $h=g^{n}$ for some $n \in \mathbb{Z}$. We have $n=k q+r$, where q is the quotient and r is the remainder after division of n by $k(0 \leq r<k)$. It follows that $g^{r}=g^{n-k q}=g^{n} g^{-k q}=h\left(g^{k}\right)^{-q} \in H$. By the choice of k, we obtain that $r=0$. Thus $h=g^{n}=g^{k q}=\left(g^{k}\right)^{q} \in\left\langle g^{k}\right\rangle$.

Examples

- Integers \mathbb{Z} with addition.

The group is cyclic, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$. The proper cyclic subgroups of \mathbb{Z} are: the trivial subgroup $\{0\}=\langle 0\rangle$ and, for any integer $m \geq 2$, the group $m \mathbb{Z}=\langle m\rangle=\langle-m\rangle$. These are all subgroups of \mathbb{Z}.

- \mathbb{Z}_{5} with addition.

The group is cyclic, $\mathbb{Z}_{5}=\langle[1]\rangle=\langle[-1]\rangle=\langle[2]\rangle=\langle[-2]\rangle$. The only proper subgroup is the trivial subgroup $\{[0]\}=\langle[0]\rangle$.

- G_{7} with multiplication.

The group is cyclic, $G_{7}=\left\langle[3]_{7}\right\rangle$. Indeed, $[3]^{2}=[9]=[2]$, $[3]^{3}=[6],[3]^{4}=[4],[3]^{5}=[5]$, and $[3]^{6}=[1]$. Also, $G_{7}=\left\langle[3]^{-1}\right\rangle=\langle[5]\rangle$. Proper subgroups are $\{[1],[2],[4]\}$, $\{[1],[6]\}$, and $\{[1]\}$.

