MATH 433 Applied Algebra

Lecture 34: Polynomials in one variable. Division of polynomials.

Polynomials in one variable

Definition. A **polynomial** in a variable (or indeterminate) X over a ring R is an expression of the form

$$p(X) = c_0 X^0 + c_1 X^1 + c_2 X^2 + \cdots + c_n X^n$$

where c_0, c_1, \ldots, c_n are elements of the ring R (called **coefficients** of the polynomial). The **degree** deg(p) of the polynomial p(X) is the largest integer k such that $c_k \neq 0$. The set of all such polynomials is denoted R[X].

Remarks on notation. The polynomial is denoted p(X) or p. The terms c_0X^0 , c_1X^1 and $1X^k$ are usually written as c_0 , c_1X and X^k . Zero terms $0X^k$ are usually omitted. Also, the terms may be rearranged, e.g., $p(X) = c_nX^n + c_{n-1}X^{n-1} + \cdots$ $\cdots + c_1X + c_0$. This does not change the polynomial.

Remark on formalism. Formally, a polynomial p(X) is determined by an infinite sequence $(c_0, c_1, c_2, ...)$ of elements of R such that $c_k = 0$ for k large enough.

Arithmetic of polynomials over a field

First consider polynomials over a field \mathbb{F} . If

$$p(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n,$$

 $q(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m,$

then $(p+q)(X) = (a_0+b_0) + (a_1+b_1)X + \cdots + (a_d+b_d)X^d$, where $d = \max(n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X) = (\lambda a_0) + (\lambda a_1)X + \cdots + (\lambda a_n)X^n$ for all $\lambda \in \mathbb{F}$. This makes $\mathbb{F}[X]$ into a vector space over \mathbb{F} , with a basis $X^0, X^1, X^2, \ldots, X^n, \ldots$

Further, $(pq)(X) = c_0 + c_1X + c_2X^2 + \cdots + c_{n+m}X^{n+m}$, where $c_k = a_0b_k + a_1b_{k-1} + \cdots + a_{k-1}b_1 + a_kb_0$, $k \ge 0$. Equivalently, the product pq is a bilinear function defined on elements of the basis by $X^nX^m = X^{n+m}$ for all $n, m \ge 0$. Multiplication is associative, which follows from bilinearity and the fact that $(X^nX^m)X^k = X^n(X^mX^k)$ for all $n, m, k \ge 0$. Thus $\mathbb{F}[X]$ is a commutative ring.

General ring of polynomials

Now consider polynomials over an arbitrary ring R. If

$$p(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n,$$

 $q(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m$

then $(p+q)(X) = (a_0+b_0) + (a_1+b_1)X + \dots + (a_d+b_d)X^d$, where $d = \max(n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X) = (\lambda a_0) + (\lambda a_1)X + \dots + (\lambda a_n)X^n$ for all $\lambda \in R$. This makes R[X] into a **module over** R. If $1 \in R$, the module has a basis $X^0, X^1, X^2, \dots, X^n, \dots$ (a free module).

Further,
$$(pq)(X) = c_0 + c_1 X + c_2 X^2 + \dots + c_{n+m} X^{n+m}$$

where $c_k = a_0b_k + a_1b_{k-1} + \cdots + a_{k-1}b_1 + a_kb_0$, $k \ge 0$. One can show that multiplication is associative and distributes over addition. Now R[X] is a **ring of polynomials**. If R is commutative (a domain, a ring with unity), then so is R[X].

Notice that $\deg(p \pm q) \leq \max(\deg(p), \deg(q))$. If $p, q \neq 0$ and R is a domain, then $\deg(pq) = \deg(p) + \deg(q)$.

Division of polynomials over a field

Let $f(x), g(x) \in \mathbb{F}[x]$ be polynomials over a field \mathbb{F} and $g \neq 0$. We say that g(x) **divides** f(x) if f = qg for some polynomial $q(x) \in \mathbb{F}[x]$. Then q is called the **quotient** of f by g.

Let f(x) and g(x) be polynomials and $\deg(g) > 0$. Suppose that f = qg + r for some polynomials q and r such that $\deg(r) < \deg(g)$ or r = 0. Then r is the **remainder** and q is the (partial) **quotient** of f by g.

Note that g(x) divides f(x) if the remainder is 0.

Theorem Let f(x) and g(x) be polynomials and $\deg(g) > 0$. Then the remainder and the quotient of f by g are well defined. Moreover, they are unique.

Long division of polynomials

Problem. Divide $x^4 + 2x^3 - 3x^2 - 9x - 7$ by $x^2 - 2x - 3$. $x^2 + 4x + 8$ $x^2 - 2x - 3 \mid x^4 + 2x^3 - 3x^2 - 9x - 7$ $x^4 - 2x^3 - 3x^2$ $4x^3 - 9x - 7$ $4x^3 - 8x^2 - 12x$ $8x^2 + 3x - 7$ $8x^2 - 16x - 24$ 19x + 17

We have obtained that

 $\begin{aligned} x^4 + 2x^3 - 3x^2 - 9x - 7 &= x^2(x^2 - 2x - 3) + 4x^3 - 9x - 7, \\ 4x^3 - 9x - 7 &= 4x(x^2 - 2x - 3) + 8x^2 + 3x - 7, \text{ and} \\ 8x^2 + 3x - 7 &= 8(x^2 - 2x - 3) + 19x + 17. \end{aligned}$ Therefore $x^4 + 2x^3 - 3x^2 - 9x - 7 &= (x^2 + 4x + 8)(x^2 - 2x - 3) + 19x + 17. \end{aligned}$

Polynomial expression vs. polynomial function

Let us consider the polynomial ring $\mathbb{F}[X]$ over a field \mathbb{F} . By definition, $p(X) = c_n X^n + c_{n-1} X^{n-1} + \cdots + c_1 X + c_0 \in \mathbb{F}[X]$ is just an expression. However we can evaluate it at any $\alpha \in \mathbb{F}$ to $p(\alpha) = c_n \alpha^n + c_{n-1} \alpha^{n-1} + \cdots + c_1 \alpha + c_0$, which is an element of \mathbb{F} . Hence each polynomial $p(X) \in \mathbb{F}[X]$ gives rise to a **polynomial function** $p : \mathbb{F} \to \mathbb{F}$. One can check that $(p+q)(\alpha) = p(\alpha) + q(\alpha)$ and $(pq)(\alpha) = p(\alpha)q(\alpha)$ for all $p(X), q(X) \in \mathbb{F}[X]$ and $\alpha \in \mathbb{F}$.

Theorem All polynomials in $\mathbb{F}[X]$ are uniquely determined by the induced polynomial functions if and only if \mathbb{F} is infinite.

Idea of the proof: Suppose \mathbb{F} is finite, $\mathbb{F} = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$. Then a polynomial $p(X) = (X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_k)$ gives rise to the same function as the zero polynomial. If \mathbb{F} is infinite, then any polynomial of degree at most *n* is uniquely determined by its values at n+1 distinct points of \mathbb{F} .

Zeros of polynomials

Definition. An element $\alpha \in R$ of a ring R is called a zero (or root) of a polynomial $f \in R[x]$ if $f(\alpha) = 0$.

Theorem Let \mathbb{F} be a field. Then $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial f(x) is divisible by $x - \alpha$.

Proof: We have $f(x) = (x - \alpha)q(x) + r(x)$, where q is the quotient and r is the remainder when f is divided by $x - \alpha$. Note that r has only the constant term. Evaluating both sides of the above equality at $x = \alpha$, we obtain $f(\alpha) = r(\alpha)$. Thus r = 0 if and only if α is a zero of f.

Corollary A polynomial $f \in \mathbb{F}[x]$ has distinct elements $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{F}$ as zeros if and only if it is divisible by $(x - \alpha_1)(x - \alpha_2) \ldots (x - \alpha_k)$.

Problem. Find the remainder after division of
$$f(x) = x^{100}$$
 by $g(x) = x^2 + x - 2$.

We have $x^{100} = (x^2 + x - 2)q(x) + r(x)$, where r(x) = ax + b for some $a, b \in \mathbb{R}$. The polynomial g has zeros 1 and -2. Evaluating both sides at x = 1 and x = -2, we obtain f(1) = r(1) and f(-2) = r(-2). This gives rise to a system of linear equations a + b = 1, $-2a + b = 2^{100}$. This system has a unique solution: $a = (1 - 2^{100})/3$, $b = (2^{100} + 2)/3$.