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Lecture 34:

Polynomials in one variable.

Division of polynomials.



Polynomials in one variable

Definition. A polynomial in a variable (or indeterminate) X
over a ring R is an expression of the form

p(X ) = c0X
0 + c1X

1 + c2X
2 + · · ·+ cnX

n,

where c0, c1, . . . , cn are elements of the ring R (called
coefficients of the polynomial). The degree deg(p) of the
polynomial p(X ) is the largest integer k such that ck 6= 0.
The set of all such polynomials is denoted R[X ].

Remarks on notation. The polynomial is denoted p(X ) or p.
The terms c0X

0, c1X
1 and 1X k are usually written as c0,

c1X and X k . Zero terms 0X k are usually omitted. Also, the
terms may be rearranged, e.g., p(X ) = cnX

n+ cn−1X
n−1+ · · ·

· · ·+ c1X + c0. This does not change the polynomial.

Remark on formalism. Formally, a polynomial p(X ) is
determined by an infinite sequence (c0, c1, c2, . . . ) of elements
of R such that ck = 0 for k large enough.



Arithmetic of polynomials over a field

First consider polynomials over a field F. If

p(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n,
q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then (p+q)(X ) = (a0+b0) + (a1+b1)X + · · ·+ (ad+bd)X
d ,

where d = max(n,m) and missing coefficients are assumed to
be zeros. Also, (λp)(X ) = (λa0) + (λa1)X + · · ·+ (λan)X

n

for all λ ∈ F. This makes F[X ] into a vector space over F,
with a basis X 0,X 1,X 2, . . . ,X n, . . .

Further, (pq)(X ) = c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0, k ≥ 0.
Equivalently, the product pq is a bilinear function defined on
elements of the basis by X nXm = X n+m for all n,m ≥ 0.
Multiplication is associative, which follows from bilinearity and
the fact that (X nXm)X k = X n(XmX k) for all n,m, k ≥ 0.

Thus F[X ] is a commutative ring.



General ring of polynomials

Now consider polynomials over an arbitrary ring R . If

p(X ) = a0 + a1X + a2X
2 + · · ·+ anX

n,
q(X ) = b0 + b1X + b2X

2 + · · ·+ bmX
m,

then (p+q)(X ) = (a0+b0) + (a1+b1)X + · · ·+ (ad+bd)X
d ,

where d = max(n,m) and missing coefficients are assumed to
be zeros. Also, (λp)(X )=(λa0)+(λa1)X+. . .+(λan)X

n for
all λ∈R . This makes R[X ] into a module over R . If 1∈R ,

the module has a basis X 0,X 1,X 2, . . . ,X n, . . . (a free module).

Further, (pq)(X ) = c0 + c1X + c2X
2 + · · ·+ cn+mX

n+m,

where ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0, k ≥ 0.
One can show that multiplication is associative and distributes
over addition. Now R[X ] is a ring of polynomials. If R is
commutative (a domain, a ring with unity), then so is R[X ].

Notice that deg(p ± q) ≤ max(deg(p), deg(q)). If p, q 6= 0
and R is a domain, then deg(pq) = deg(p) + deg(q).



Division of polynomials over a field

Let f (x), g(x) ∈ F[x ] be polynomials over a field F and
g 6= 0. We say that g(x) divides f (x) if f = qg for some
polynomial q(x) ∈ F[x ]. Then q is called the quotient of f
by g .

Let f (x) and g(x) be polynomials and deg(g) > 0. Suppose
that f = qg + r for some polynomials q and r such that
deg(r) < deg(g) or r = 0. Then r is the remainder and q is
the (partial) quotient of f by g .

Note that g(x) divides f (x) if the remainder is 0.

Theorem Let f (x) and g(x) be polynomials and
deg(g) > 0. Then the remainder and the quotient of f by g

are well defined. Moreover, they are unique.



Long division of polynomials

Problem. Divide x4 + 2x3 − 3x2 − 9x − 7 by x2 − 2x − 3.

x2 + 4x + 8

x2 − 2x − 3 | x4 + 2x3 − 3x2 − 9x − 7
x4 − 2x3 − 3x2

4x3 − 9x − 7
4x3 − 8x2 − 12x

8x2 + 3x − 7
8x2 − 16x − 24

19x + 17
We have obtained that

x4 + 2x3 − 3x2 − 9x − 7 = x2(x2 − 2x − 3) + 4x3 − 9x − 7,
4x3 − 9x − 7 = 4x(x2 − 2x − 3) + 8x2 + 3x − 7, and
8x2 + 3x − 7 = 8(x2 − 2x − 3) + 19x + 17. Therefore

x4+2x3−3x2−9x−7 = (x2+4x+8)(x2−2x−3)+19x+17.



Polynomial expression vs. polynomial function

Let us consider the polynomial ring F[X ] over a field F. By
definition, p(X ) = cnX

n + cn−1X
n−1 + · · ·+ c1X + c0 ∈ F[X ]

is just an expression. However we can evaluate it at any
α ∈ F to p(α) = cnα

n + cn−1α
n−1 + · · ·+ c1α + c0, which is

an element of F. Hence each polynomial p(X ) ∈ F[X ] gives
rise to a polynomial function p : F → F. One can check
that (p + q)(α) = p(α) + q(α) and (pq)(α) = p(α)q(α) for
all p(X ), q(X ) ∈ F[X ] and α ∈ F.

Theorem All polynomials in F[X ] are uniquely determined
by the induced polynomial functions if and only if F is infinite.

Idea of the proof: Suppose F is finite, F = {α1, α2, . . . , αk}.
Then a polynomial p(X ) = (X − α1)(X − α2) . . . (X − αk)
gives rise to the same function as the zero polynomial.

If F is infinite, then any polynomial of degree at most n is
uniquely determined by its values at n+1 distinct points of F.



Zeros of polynomials

Definition. An element α ∈ R of a ring R is called a zero (or
root) of a polynomial f ∈ R[x ] if f (α) = 0.

Theorem Let F be a field. Then α ∈ F is a zero of f ∈ F[x ]
if and only if the polynomial f (x) is divisible by x − α.

Proof: We have f (x) = (x − α)q(x) + r(x), where q is the
quotient and r is the remainder when f is divided by x − α.
Note that r has only the constant term. Evaluating both
sides of the above equality at x = α, we obtain f (α) = r(α).
Thus r = 0 if and only if α is a zero of f .

Corollary A polynomial f ∈ F[x ] has distinct elements
α1, α2, . . . , αk ∈ F as zeros if and only if it is divisible by
(x − α1)(x − α2) . . . (x − αk).



Problem. Find the remainder after division of
f (x) = x100 by g(x) = x2 + x − 2.

We have x100 = (x2 + x − 2)q(x) + r(x), where
r(x) = ax + b for some a, b ∈ R. The polynomial g has
zeros 1 and −2. Evaluating both sides at x = 1 and
x = −2, we obtain f (1) = r(1) and f (−2) = r(−2).
This gives rise to a system of linear equations a + b = 1,
−2a + b = 2100. This system has a unique solution:
a = (1− 2100)/3, b = (2100 + 2)/3.


