MATH 433
 Applied Algebra

 Lecture 34:Polynomials in one variable. Division of polynomials.

Polynomials in one variable

Definition. A polynomial in a variable (or indeterminate) X over a ring R is an expression of the form

$$
p(X)=c_{0} X^{0}+c_{1} X^{1}+c_{2} X^{2}+\cdots+c_{n} X^{n},
$$

where $c_{0}, c_{1}, \ldots, c_{n}$ are elements of the ring R (called coefficients of the polynomial). The degree $\operatorname{deg}(p)$ of the polynomial $p(X)$ is the largest integer k such that $c_{k} \neq 0$. The set of all such polynomials is denoted $R[X]$.

Remarks on notation. The polynomial is denoted $p(X)$ or p. The terms $c_{0} X^{0}, c_{1} X^{1}$ and $1 X^{k}$ are usually written as c_{0}, $c_{1} X$ and X^{k}. Zero terms $0 X^{k}$ are usually omitted. Also, the terms may be rearranged, e.g., $p(X)=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots$ $\cdots+c_{1} X+c_{0}$. This does not change the polynomial.
Remark on formalism. Formally, a polynomial $p(X)$ is determined by an infinite sequence ($c_{0}, c_{1}, c_{2}, \ldots$) of elements of R such that $c_{k}=0$ for k large enough.

Arithmetic of polynomials over a field

First consider polynomials over a field \mathbb{F}. If

$$
\begin{gathered}
p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \\
q(X)=b_{0}+b_{1} X+b_{2} X^{2}+\cdots+b_{m} X^{m}
\end{gathered}
$$

then $(p+q)(X)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) X+\cdots+\left(a_{d}+b_{d}\right) X^{d}$, where $d=\max (n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X)=\left(\lambda a_{0}\right)+\left(\lambda a_{1}\right) X+\cdots+\left(\lambda a_{n}\right) X^{n}$ for all $\lambda \in \mathbb{F}$. This makes $\mathbb{F}[X]$ into a vector space over \mathbb{F}, with a basis $X^{0}, X^{1}, X^{2}, \ldots, X^{n}, \ldots$
Further, $(p q)(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n+m} X^{n+m}$, where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}, \quad k \geq 0$. Equivalently, the product $p q$ is a bilinear function defined on elements of the basis by $X^{n} X^{m}=X^{n+m}$ for all $n, m \geq 0$. Multiplication is associative, which follows from bilinearity and the fact that $\left(X^{n} X^{m}\right) X^{k}=X^{n}\left(X^{m} X^{k}\right)$ for all $n, m, k \geq 0$.
Thus $\mathbb{F}[X]$ is a commutative ring.

General ring of polynomials

Now consider polynomials over an arbitrary ring R. If

$$
\begin{gathered}
p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \\
q(X)=b_{0}+b_{1} X+b_{2} X^{2}+\cdots+b_{m} X^{m}
\end{gathered}
$$

then $(p+q)(X)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) X+\cdots+\left(a_{d}+b_{d}\right) X^{d}$, where $d=\max (n, m)$ and missing coefficients are assumed to be zeros. Also, $(\lambda p)(X)=\left(\lambda a_{0}\right)+\left(\lambda a_{1}\right) X+\ldots+\left(\lambda a_{n}\right) X^{n}$ for all $\lambda \in R$. This makes $R[X]$ into a module over R. If $1 \in R$, the module has a basis $X^{0}, X^{1}, X^{2}, \ldots, X^{n}, \ldots$ (a free module).
Further, $(p q)(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n+m} X^{n+m}$, where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}, \quad k \geq 0$.
One can show that multiplication is associative and distributes over addition. Now $R[X]$ is a ring of polynomials. If R is commutative (a domain, a ring with unity), then so is $R[X]$.

Notice that $\operatorname{deg}(p \pm q) \leq \max (\operatorname{deg}(p), \operatorname{deg}(q))$. If $p, q \neq 0$ and R is a domain, then $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$.

Division of polynomials over a field

Let $f(x), g(x) \in \mathbb{F}[x]$ be polynomials over a field \mathbb{F} and $g \neq 0$. We say that $g(x)$ divides $f(x)$ if $f=q g$ for some polynomial $q(x) \in \mathbb{F}[x]$. Then q is called the quotient of f by g.

Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Suppose that $f=q g+r$ for some polynomials q and r such that $\operatorname{deg}(r)<\operatorname{deg}(g)$ or $r=0$. Then r is the remainder and q is the (partial) quotient of f by g.
Note that $g(x)$ divides $f(x)$ if the remainder is 0 .
Theorem Let $f(x)$ and $g(x)$ be polynomials and $\operatorname{deg}(g)>0$. Then the remainder and the quotient of f by g are well defined. Moreover, they are unique.

Long division of polynomials

Problem. Divide $x^{4}+2 x^{3}-3 x^{2}-9 x-7$ by $x^{2}-2 x-3$.

$$
\begin{aligned}
& x^{2}-2 x-3 \left\lvert\, \frac{x^{2}+4 x+8}{x^{4}+2 x^{3}-3 x^{2}-9 x-7}\right. \\
& x^{4}-2 x^{3}-3 x^{2} \\
& \begin{array}{r}
4 x^{3}-9 x-7 \\
4 x^{3}-8 x^{2}-12 x-7
\end{array} \\
& \frac{8 x^{2}-16 x-24}{19 x+17}
\end{aligned}
$$

We have obtained that
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=x^{2}\left(x^{2}-2 x-3\right)+4 x^{3}-9 x-7$,
$4 x^{3}-9 x-7=4 x\left(x^{2}-2 x-3\right)+8 x^{2}+3 x-7$, and
$8 x^{2}+3 x-7=8\left(x^{2}-2 x-3\right)+19 x+17$. Therefore
$x^{4}+2 x^{3}-3 x^{2}-9 x-7=\left(x^{2}+4 x+8\right)\left(x^{2}-2 x-3\right)+19 x+17$.

Polynomial expression vs. polynomial function

Let us consider the polynomial ring $\mathbb{F}[X]$ over a field \mathbb{F}. By definition, $p(X)=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c_{0} \in \mathbb{F}[X]$ is just an expression. However we can evaluate it at any $\alpha \in \mathbb{F}$ to $p(\alpha)=c_{n} \alpha^{n}+c_{n-1} \alpha^{n-1}+\cdots+c_{1} \alpha+c_{0}$, which is an element of \mathbb{F}. Hence each polynomial $p(X) \in \mathbb{F}[X]$ gives rise to a polynomial function $p: \mathbb{F} \rightarrow \mathbb{F}$. One can check that $(p+q)(\alpha)=p(\alpha)+q(\alpha)$ and $(p q)(\alpha)=p(\alpha) q(\alpha)$ for all $p(X), q(X) \in \mathbb{F}[X]$ and $\alpha \in \mathbb{F}$.

Theorem All polynomials in $\mathbb{F}[X]$ are uniquely determined by the induced polynomial functions if and only if \mathbb{F} is infinite. Idea of the proof: Suppose \mathbb{F} is finite, $\mathbb{F}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. Then a polynomial $p(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{k}\right)$ gives rise to the same function as the zero polynomial. If \mathbb{F} is infinite, then any polynomial of degree at most n is uniquely determined by its values at $n+1$ distinct points of \mathbb{F}.

Zeros of polynomials

Definition. An element $\alpha \in R$ of a ring R is called a zero (or root) of a polynomial $f \in R[x]$ if $f(\alpha)=0$.

Theorem Let \mathbb{F} be a field. Then $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial $f(x)$ is divisible by $x-\alpha$.
Proof: We have $f(x)=(x-\alpha) q(x)+r(x)$, where q is the quotient and r is the remainder when f is divided by $x-\alpha$. Note that r has only the constant term. Evaluating both sides of the above equality at $x=\alpha$, we obtain $f(\alpha)=r(\alpha)$. Thus $r=0$ if and only if α is a zero of f.

Corollary A polynomial $f \in \mathbb{F}[x]$ has distinct elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{F}$ as zeros if and only if it is divisible by $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{k}\right)$.

Problem. Find the remainder after division of $f(x)=x^{100}$ by $g(x)=x^{2}+x-2$.

We have $x^{100}=\left(x^{2}+x-2\right) q(x)+r(x)$, where $r(x)=a x+b$ for some $a, b \in \mathbb{R}$. The polynomial g has zeros 1 and -2 . Evaluating both sides at $x=1$ and $x=-2$, we obtain $f(1)=r(1)$ and $f(-2)=r(-2)$.
This gives rise to a system of linear equations $a+b=1$,
$-2 a+b=2^{100}$. This system has a unique solution:
$a=\left(1-2^{100}\right) / 3, b=\left(2^{100}+2\right) / 3$.

