MATH 433
Applied Algebra

Lecture 38:
Review for the final exam.



Topics for the final exam: Part |

e Mathematical induction, strong induction

e Greatest common divisor, Euclidean algorithm
e Primes, factorisation, Unique Factorisation Theorem
e Congruence classes, modular arithmetic

e Inverse of a congruence class

e Linear congruences

e Chinese Remainder Theorem

e Order of a congruence class

e Fermat’s Little Theorem, Euler's Theorem

e Euler’s phi-function

e Public key encryption, the RSA system



Topics for the final exam: Part ||

Relations, properties of relations
Finite state machines, automata

Permutations

Cycles, transpositions

Cycle decomposition of a permutation
Order of a permutation

Sign of a permutation

Symmetric and alternating groups

Abstract groups (definition and examples)
Basic properties of groups

Semigroups

Rings, zero-divisors

Basic properties of rings

Fields, characteristic of a field

Vector spaces over a field



Topics for the final exam: Part Il

Order of an element in a group

Subgroups

Cyclic groups

Cosets

Lagrange's Theorem

Isomorphism of groups, classification of groups

The ISBN code

Binary codes, error detection and error correction
Linear codes, generator matrix

Coset leaders, coset decoding table

Parity-check matrix, syndromes

Division of polynomials
Greatest common divisor of polynomials
Factorisation of polynomials



Problem. Solve the equation
2x190 1 x4+ x29 = 0 over the field Z1;.

The equation is equivalent to
x®(2x™ +x*2 +1)=0.

Hence x =0 or 2x* +x*? +1 =0. By Fermat's
Little Theorem, x'% =1 for any nonzero x € Z;.
Since 0 is not a solution of the equation

2x™ 4+ x* 41 =0, this equation is equivalent to
2x+x*+1=0 <= (x+1)°=0 < x=-1

Thus the solutions are x =0 and x = 10
(note that —1 = 10 mod 11).



Problem. Factorise p(x) = x*+ x® —2x>+3x — 1 into
irreducible factors over the field Q.

Possible rational zeros of p are 1 and —1. They are not zeros.
Hence p is either irreducible over QQ or else it is factored as

x*+x3—2x2+3x — 1= (ax® + bx + c)(a'x* + b'x + ¢').

Since p € Z[x], one can show that the factorisation (if it
exists) can be chosen so that all coefficients are integer.
Additionally, we can assume that a > 0 (otherwise we could
multiply each factor by —1). Equating the corresponding
coefficients of the left-hand side and the right-hand side, we
obtain aa’ =1, abl +ab=1, ac’ + bb' + d'c = -2,

bc’ + b'c =3 and cc’ = —1. The first and the last equations
imply that a=a' =1, c=1 or —1,and ¢ = —c. Then
b+ b =1 and bb' = —2, which implies {b,b'} = {2, —1}.
Finallyy, c=—-1if b=2 and c=1 if b=—-1. Wecan
check that indeed

x4+ x3 -2 +3x —1=(x*+2x - 1)(x®* — x + 1).



Problem. The polynomial f(x) = x®+3x> —5x® +3x — 1
has how many distinct complex roots?

Let p € C[x] be a nonzero polynomial. We say that a € C
is a root of p of multiplicity kK > 1 if the polynomial is
divisible by (x — a)* but not divisible by (x — a)**1.
Equivalently, p(x ) (x — a)¥q(x) for some polynomial g
such that g(a) # 0. If this is the case then

P(x) = ((x— ) )/ (%) + (x = a)*q'(x)
= k(x — a)*q(x) + (x = a)*q'(x) = (x — a)**r(x),
where r(x) = kg(x) + (x — @)q’(x). Note that r(x) is a

polynomial and r(a) = kg(a) # 0. Hence « is a root of p’ of
multiplicity k — 1 if kK > 1 and not a root of p' if k =1.



Problem. The polynomial f(x) = x® +3x®> —5x3 +3x — 1
has how many distinct complex roots?

By the Fundamental Theorem of Algebra, any polynomial
p € C[x] of degree n > 1 can be represented as

p(x) =c(x —a1)(x — ) ...(x —ay),

where ¢, aq,...,a, € C and ¢ #0. The numbers
Q1,Qp, ..., q, are roots of p, they need not be distinct. We
have
p(x) = c(x = f1)(x = B2) ... (x = Bm)*m,
where 1, ..., 8, are distinct roots of p and ki,...,k, are

their multiplicities. It follows from the above that
ged(p(x), p'(x)) = (x = Bu)* 7 H(x — o)™t (x — Bm) L.

As a consequence, the number of distinct roots of the
polynomial p equals deg(p) — deg(gcd(p, p')).



Problem. The polynomial f(x) = x® +3x®> —5x3 +3x — 1
has how many distinct complex roots?

Let's use the Euclidean algorithm to find the greatest common
divisor of the polynomials f(x) = x® +3x% —5x3 +3x — 1
and f'(x) = 6x° + 15x* — 15x? 4+ 3. First we divide f by f":

x®4+3x%—5x3+3x—1 = (6x°+15x* —15x°+3) (s x+ 15 ) + r(x),

where r(x) = —2x* — 2x3+ 2x2 + 2x — 2. It is convenient
to replace the remainder r(x) by its scalar multiple

F(x) = —gr(x) = x* +2x3 — x> — 2x + 1. Next we divide f’
by

6x> + 15x* — 156x2 + 3 = (x* + 2x® — x? — 2x + 1)(6x + 3).

Since f’ is divisible by 7, it follows that gcd(f,f") = ged(f’,r)
= gcd(f’, F) = F. Thus the number of distinct complex roots

of the polynomial f equals deg(f) — deg(gcd(f,f')) =6 —4

= 2.



Problem. The polynomial f(x) = x® +3x> —5x3 +3x — 1
has how many distinct complex roots?

As a follow-up to the solution, we can find the roots of the
polynomial f. It follows from the solution that the polynomial
g = f/gcd(f, ') has the same roots as f but, unlike f, all
roots of g are simple (i.e., of multiplicity 1). Dividing f by
F(x) = x* + 2x3 — x> — 2x + 1, we obtain

x®+3x°—=5x3+3x—1 = (x*+2x> —x? —2x+1)(x*+x—1).

The polynomial g(x) = x? + x — 1 has two real roots

Brp = 2(—=1£V/5). Therefore f(x) = (x — B1)"(x — )",
where k; and k» are positive integers, k; + ko = 6. Note that
B1B> = —1 (the constant term of g) and ({1682 = —1 (the
constant term of ). Then ff~% = (—1)**1 a rational
number. This suggests k1 — k, = 0 (so that k; = k, = 3).
We can check by direct multiplication that, indeed,

x0+3x°—5x343x—1 = (x>+x—1)* = (x—1)3(x—52)3.



