MATH 614
Dynamical Systems and Chaos
Lecture 25:

Ergodic theorems.
Ergodicity and mixing.



Measure-preserving transformation

Definition. A measured space is a triple

(X, B, 1), where X is a set, B is a o-algebra of
(measurable) subsets of X, and p: B — [0,00] is a
o-additive measure on X (finite or o-finite).

A mapping T : X — X is called measurable if
preimage of any measurable set under T is also
measurable: £ € B = T }(E) € B.

A measurable mapping T : X — X is called
measure-preserving if for any E € B one has

(THE)) = u(E).



Borel sets

Proposition Given a collection S of subsets of X,
there exists a minimal o-algebra of subsets of X
that contains S.

Suppose X is a topological space. The Borel
o-algebra B(X) is the minimal o-algebra that
contains all open subsets of X. Elements of B(X)
are called Borel sets.

A mapping F : X — X is measurable relative to
B(X) if and only if the preimage of any open set is
Borel. In particular, each continuous map is
measurable.



Recurrence

(X, B, 11): measured space
T : X — X: measure-preserving mapping

Let E be a measurable subset of X. A point x € E
is called recurrent if T"(x) € E for some n > 1.

A point x € E is called infinitely recurrent if the
orbit x, T(x), T%(x),... visits E infinitely many
times.

Theorem (Poincaré) Suppose 1 is a finite
measure. Then almost all points of E are infinitely
recurrent.



Individual ergodic theorem

Let (X, B, i) be a measured space and T : X — X
be a measure-preserving transformation.

Birkhoff’s Ergodic Theorem For any function
f e Li(X,u), the limit
n—1
- k _rx
nh—?;onz%f (T*(x)) = f*(x)

exists for almost all x € X. The function f* is
T-invariant, i.e., f*o T = f* almost everywhere.
If 14 is finite then f* € L1(X, ) and

/f*d,u:/fd,u.
X X



Ergodicity

Let (X, B, i) be a measured space and T : X — X be a
measure-preserving transformation.

We say that a measurable set E C X is invariant under T if
W(EATYE)) =0, thatis, if E= T '(E) up to a set of
zero measure.

Note that there is a measurable set Ey C E such that
W(EAE) =0 and T (Ey) = Ey. Namely, let

E,=EUT YE)UT2(E)U.... Then E C E,
wEt\E) =0, w(EEAT Y E)) =0, and T7Y(E) C E;.
Now EO = El N T_I(El) N T_2(E1) M....

Definition. The transformation T is called ergodic with
respect to y if any T-invariant measurable set E has either
zero or full measure: p(E) =0 or u(X\ E) =0.



Birkhoff’s Ergodic Theorem (ergodic case)
Suppose 1 is finite and T is ergodic. Given
f e Li(X,pn), for almost all x € X we have

1
lim =)  f(T*(x /fd,u.
=00 ”Z M(X) X

(time average is equal to space average)

In the case f = xg (E € B), we obtain

m #{OSkSn—HTk(x)EE}:,u(E)
n—00 n M(X)

(almost every orbit is uniformly distributed)



Koopman’s operator

(X, B, 11): measured space
T : X — X: measure-preserving transformation

To any function f : X — C we assign another
function Uf defined by (Uf)(x) = f(T(x)) for all
x € X.

Linear functional operator U: f — Uf.

Proposition If f is integrable then so is Uf.
Moreover,

/X UF dyi = /X F(T(x)) dp(x) = /X fdp.



f e Lo(X, ) means that [, |f|*du < oco.
Lo(X, u) is a Hilbert space with respect to the inner product

(Fg) = / F(x)2(x) du(x).

Let T be a measure-preserving transformation and U be the
associated operator.

Then U(La(x,p)) C La(X, ). Furthermore,
(Uf, Ug) = (f,8)
for all f,g € La(X, o).

That is, U is an isometric operator in the Hilbert space
Lr(X, ). If T isinvertible and T~ is also
measure-preserving, then U is a unitary operator.



Mean ergodic theorem

von Neumann’s Ergodic Theorem Suppose U is
an isometric operator in a Hilbert space H. Then
for any f € H,

n—1

.1 K .
nIer;OEZ%U f=17"(inH),

where f* € H is the orthogonal projection of f on
the subspace of U-invariant functions in H.

Namely, Uf* = f* and (f — f*,g) =0 for any
element g € H such that Ug = g.



If U is associated to a measure-preserving map T : X — X,
then for any f € L,(X, ) we have

. 1 n—1 k *2
n"lﬂo/x‘ﬁzk:ou f—f| du—o,

where f* € (X, u) and Uf* = f*.

Lemma T is ergodic if and only if Uf = f for a measurable
function f implies f is constant (almost everywhere).

If T is ergodic then

. 1 n—1 P 2
nan;oL);zk—oU f—c‘ i =0,

where

C:ﬁ/xfdu.



Rotations of the circle

Measured space (S!,B(S'), 1), where p is the
length measure on S*.

R.: rotation of the unit circle by angle a.
R, is a measure-preserving homeomorphism.

Theorem If a is not commensurable with 7, then
the rotation R, is ergodic.



Let U, be the associated operator on Ly(S!, 11).

Relative to the angular coordinate on S!, elements
of Ly(S%, ) are 27-periodic functions on R. The
inner product is given by

(Fg) = / " F(x)g () d

The operator U, acts as follows:
(Usf)(x) =f(x+a), xeR.



Forany m € Z let hy(x) =e™, x € R. Then

hpm € Ly(SY, 1) and Uphy, = €™ h, so that hy, is
an eigenfunction of U,. Note that {h;,}mez is an
orthogonal basis of the Hilbert space Lp(X, ). We
say that U, has pure point spectrum.

Any f € Ly(X, ) is uniquely expanded as
f= ZmEZ Cmhm, (Fourier series)
where ¢, € C. Then

U,f = ZmEZ e ¢ hm.

Hence U,f = f only if (¢™ —1)c,, =0 for all
m € Z. Thatis, if f = ¢y, a constant.



Mixing
(X, B, 11): measured space of finite measure
T : X — X: measure-preserving transformation

T is called mixing if for any measurable sets
A, B C X we have

- _n ~ u(A)u(B)
n||_>r20u(T (A)N B) = X))

Lemma Mixing = ergodicity.

Proof: Suppose C C X is measurable and T-invariant.
Then T~"(C) = C up to a set of zero measure. Therefore

p(T77(€) N C) = pu(C).
If T is mixing then p(C) = p(C)u(C)/p(X), which implies
that (C) =0 or p(C) = p(X).



Doubling map 4

0 1/2 1

D :[0,1) — [0,1),
D(x) =2x mod 1, x € [0,1).



Theorem The doubling map is mixing.

Proof: Let AC[0,1) and n>1. Then D "(A)
is the union of 2" disjoint pieces 2—1nA + 25
k=01,...,2" 1.

Suppose B = [zim, ’Q“L—ml) where m >0, 0 </ < 2™,
If n > m then exactly 2"~ pieces are contained in
B, the others are disjoint from B. Hence

u(D-"(A) 11 B) = 27 2-7u( A) = p(A)u(B).
Since any measurable set B can be approximated by
disjoint unions of the above intervals,

lim p(D="(A) N B) = p(A)p(B).



Proposition The rotation R, of the circle is not
mixing.

Proof: For any £ > 0 there exists n > 0 such that
R" = R, is the rotation by an angle < e.

Hence there exists a sequence ny < ny, < ... such
that for any arc v C S1,

Jim u(R™(v) O y) = ().
But u(vy) # M(’Y)M(’Y)/M(Sl) if v# S



(X, B, 11): measured space of finite measure
T : X — X: measure-preserving transformation

T is mixing if and only if for any £, g € Ly(X, u),

tim [ AT i) = = [ Fan [ g

(£, 1)(1,8)
I nf =7
Jim (U 8) =1
Suppose f is a nonconstant eigenfunction of U,

Uf = Mf, |A] =1. Itis no loss to assume that
(f,1) = 0. Obviously,

(U"f,f)=A"(f,f) A0 as n— oc.



(X, B, 1t): measured space of finite measure
T : X — X: measure-preserving transformation
U: Ly(X, 1) = Lo(X, p): associated linear operator

T is called weakly mixing if U has no
eigenfunctions other than constants.

mixing =—> weak mixing = ergodicity

In particular, the doubling map has no nonconstant
eigenfunctions. In this case, the operator U has
countable Lebesgue spectrum. Namely, there
are functions f,,, (n,m=1,2,...) on S! such that
1 and f,,, n,m > 1 form an orthogonal basis for
Ly(X, i), and Ufypm = fy my1 forany n,m> 1.



Translation of the torus R, 5: T? — T?, o, € R.
Rop(x1, %) = (x1 + o, x2 + B).
R, is a measure-preserving homeomorphism.

Theorem R, 3 has pure point spectrum. It is
ergodic if and only if the numbers «, 3, and 1 are
linearly independent over Q (i.e., for any

k,m,n € Z the equality ka + mB + n=0 implies
k=m=n=0).



Theorem Any hyperbolic toral automorphism Ty
of the flat torus is ergodic.

Proof: Let f : T? — C be a continuous function.
By Birkhoff's Ergodic Theorem, for almost all
x € T? 11

lim =37 F(TH()) = F(x),
k=0

where f* is an integrable function. Also, for almost
all x € T%

lim 237 F(T4()) = £ ().
k=0

where f** is an integrable function.



von Neumann's Ergodic Theorem implies that
f* = f** almost everywhere.

Let x € T? and y € W*(x). Then
dist(TA(y), TA(x)) = 0 as n — oo.

Since f is continuous, it follows that
F(TA(y)) — f(TA(x))] = 0 as n — oo.
Therefore *(y) = *(x).

Similarly, if y € WY(x) then f**(y) = f**(x).

Thus f* is constant along leaves of the stable
foliation while f** is constant along leaves of the
unstable foliation. Since f* = f** a.e., it follows
that f* is constant almost everywhere.



Doubling map D, : T? — T?;
DQ(Xl,XQ) == (2X1 mod ].,2X2 mod 1)

Theorem The doubling map on the torus preserves
measure and is mixing. It has countable Lebesgue
spectrum.




