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Dynamical Systems and Chaos

Lecture 38:
Ergodicity (continued).

Mixing.



Ergodic theorems

Let (X ,B, µ) be a measured space and T : X → X be a
measure-preserving transformation.

Birkhoff’s Ergodic Theorem For any function
f ∈ L1(X , µ), the limit

lim
n→∞

1

n

∑n−1

k=0

f (T k(x)) = f ∗(x)

exists for almost all x ∈ X . The function f ∗ is T -invariant,
i.e., f ∗ ◦ T = f ∗ almost everywhere.

von Neumann’s Ergodic Theorem For any function
f ∈ L2(X , µ), the above limit exists in the Hilbert space
L2(X , µ). Moreover, f ∗ is the orthogonal projection of f on
the subspace of functions invariant under Koopman’s operator
U : L2(X , µ) → L2(X , µ), Uf = f ◦ T .

Remark. If f ∈ L1(X , µ) ∩ L2(X , µ), then the limit function
f ∗ is the same in both theorems.



Ergodicity

Let (X ,B, µ) be a measured space and T : X → X be a
measure-preserving transformation.

Definition. The transformation T is called ergodic with
respect to µ if any T -invariant measurable set E has either
zero or full measure: µ(E ) = 0 or µ(X \ E ) = 0.

Theorem The following conditions are equivalent:
• T is ergodic;
• for any sets A,B ⊂ X of positive measure there exists an
integer n > 0 such that T n(A) ∩ B 6= ∅;
• for any sets A,B ⊂ X of positive measure there exists an
integer n > 0 such that µ(A ∩ T−n(B)) > 0;
• any measurable function f : X → C invariant under T
(that is, f ◦ T = f almost everywhere) is constant µ-a.e.;
• any function f ∈ L2(X , µ) invariant under T is constant
almost everywhere.



Rotations of the circle

Measured space (S1,B(S1), µ), where µ is the
length measure on S1.

Rα: rotation of the unit circle by angle α.
Rα is a measure-preserving homeomorphism.

Theorem If α is not commensurable with π, then

the rotation Rα is ergodic.



Let Uα be the associated operator on L2(S
1, µ).

Relative to the angular coordinate on S1, elements

of L2(S
1, µ) are 2π-periodic functions on R. The

inner product is given by

(f , g) =

∫
2π

0

f (x)g(x)dx .

The operator Uα acts as follows:

(Uαf )(x) = f (x + α), x ∈ R.



For any m ∈ Z let hm(x) = e imx , x ∈ R. Then
hm ∈ L2(S

1, µ) and Uαhm = e imαhm so that hm is

an eigenfunction of Uα. Note that {hm}m∈Z is an
orthogonal basis of the Hilbert space L2(X , µ). We

say that Uα has pure point spectrum.

Any f ∈ L2(X , µ) is uniquely expanded as

f =
∑

m∈Z
cmhm, (Fourier series)

where cm ∈ C. Then

Uαf =
∑

m∈Z
e imαcmhm.

Hence Uαf = f only if (e imα − 1)cm = 0 for all
m ∈ Z. That is, if f = c0, a constant.



Doubling map

11/2

1

0

D : [0, 1) → [0, 1),
D(x) = 2x mod 1, x ∈ [0, 1).



Theorem The doubling map is ergodic.

Sketch of the proof: We know that functions hn(x) = e inx ,
form an orthogonal basis of the Hilbert space L2(S

1, µ).
Koopman’s operator U of the doubling map acts on them as
follows:

h0
• 	
h1
• −→

h2
• −→

h4
• −→

h8
• −→ · · ·

h3
• −→

h6
• −→

h12
• −→

h24
• −→ · · ·

h5
• −→

h10
• −→

h20
• −→

h40
• −→ · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any f ∈ L2(X , µ) is uniquely expanded into a Fourier series
f =

∑
m∈Z cmhm, where cm ∈ C. Then

Uf =
∑

m∈Z
cmU(hm) =

∑
m∈Z

cmh2m.

Hence Uf = f only if c2m = cm for all m ∈ Z and cm = 0
for all odd integers m. That is, if f = c0, a constant.



Theorem Any hyperbolic toral automorphism TA

of the flat torus is ergodic.

Proof: Let f : T2 → C be a continuous function.

By Birkhoff’s Ergodic Theorem, for almost all
x ∈ T2:

lim
n→∞

1

n

n−1∑
k=0

f (T k

A(x)) = f ∗(x),

where f ∗ is an integrable function. Also, for almost

all x ∈ T2:

lim
n→∞

1

n

n−1∑
k=0

f (T−k

A
(x)) = f ∗∗(x),

where f ∗∗ is an integrable function.



von Neumann’s Ergodic Theorem implies that
f ∗ = f ∗∗ almost everywhere.

Let x ∈ T2 and y ∈ W s(x). Then
dist(T n

A
(y),T n

A
(x)) → 0 as n → ∞.

Since f is continuous, it follows that

|f (T n

A
(y))− f (T n

A
(x))| → 0 as n → ∞.

Therefore f ∗(y) = f ∗(x).

Similarly, if y ∈ W u(x) then f ∗∗(y) = f ∗∗(x).

Thus f ∗ is constant along leaves of the stable
foliation while f ∗∗ is constant along leaves of the

unstable foliation. Since f ∗ = f ∗∗ a.e., it follows
that f ∗ is constant almost everywhere.



Mixing

(X ,B, µ): measured space of finite measure
T : X → X : measure-preserving transformation

T is called mixing if for any measurable sets

A,B ⊂ X we have

lim
n→∞

µ(T−n(A) ∩ B) =
µ(A)µ(B)

µ(X )
.

Lemma Mixing =⇒ ergodicity.

Proof: Suppose C ⊂ X is measurable and T -invariant.
Then T−n(C ) = C up to a set of zero measure. Therefore
µ(T−n(C ) ∩ C ) = µ(C ).

If T is mixing then µ(C ) = µ(C )µ(C )/µ(X ), which implies
that µ(C ) = 0 or µ(C ) = µ(X ).



Theorem The doubling map is mixing.

Proof: Let A ⊂ [0, 1) and n ≥ 1. Then D−n(A)
is the union of 2n disjoint pieces 1

2n
A+ k

2n
,

k = 0, 1, . . . , 2n − 1.

Suppose B = [ l

2m
, l+1

2m
), where m > 0, 0 ≤ l < 2m.

If n ≥ m then exactly 2n−m pieces are contained in

B , the others are disjoint from B . Hence

µ(D−n(A) ∩ B) = 2n−m · 2−nµ(A) = µ(A)µ(B).

Since any measurable set B can be approximated by

disjoint unions of the above intervals,

lim
n→∞

µ(D−n(A) ∩ B) = µ(A)µ(B).



Proposition The rotation Rα of the circle is not
mixing.

Proof: For any ε > 0 there exists n > 0 such that

Rn
α = Rnα is the rotation by an angle < ε.

Hence there exists a sequence n1 < n2 < . . . such
that for any arc γ ⊂ S1,

lim
k→∞

µ(R−nk
α (γ) ∩ γ) = µ(γ).

But µ(γ) 6= µ(γ)µ(γ)/µ(S1) if γ 6= S1.



(X ,B, µ): measured space of finite measure

T : X → X : measure-preserving transformation

T is mixing if and only if for any f , g ∈ L2(X , µ),

lim
n→∞

∫
X

f (T n(x))g(x) dµ(x) =
1

µ(X )

∫
X

f dµ

∫
X

g dµ.

lim
n→∞

(Unf , g) =
(f , 1)(1, g)

(1, 1)
.

Suppose f is a nonconstant eigenfunction of U ,
Uf = λf , |λ| = 1. It is no loss to assume that

(f , 1) = 0. Obviously,

(Unf , f ) = λn(f , f ) 6→ 0 as n → ∞.



(X ,B, µ): measured space of finite measure
T : X → X : measure-preserving transformation
U : L2(X , µ) → L2(X , µ): associated linear operator

T is called weakly mixing if U has no
eigenfunctions other than constants.

mixing =⇒ weak mixing =⇒ ergodicity

In particular, the doubling map has no nonconstant
eigenfunctions. In this case, the operator U has
countable Lebesgue spectrum. Namely, there

are functions fnm (n,m = 1, 2, . . . ) on S1 such that
1 and fnm, n,m ≥ 1 form an orthogonal basis for

L2(X , µ), and Ufnm = fn,m+1 for any n,m ≥ 1.



Translation of the torus Rα,β : T2 → T2, α, β ∈ R.
Rα,β(x1, x2) = (x1 + α, x2 + β).

Rα,β is a measure-preserving homeomorphism.

Theorem Rα,β has pure point spectrum. It is
ergodic if and only if the numbers α, β, and 1 are

linearly independent over Q (i.e., for any
k ,m, n ∈ Z the equality kα+mβ + n = 0 implies

k = m = n = 0).



Doubling map D2 : T
2 → T2;

D2(x1, x2) = (2x1 mod 1, 2x2 mod 1).

Theorem The doubling map on the torus preserves

measure and is mixing. It has countable Lebesgue
spectrum.


