MATH 614

Dynamical Systems and Chaos

Lecture 15:
 Maps of the circle.

Circle S^{1}.

$\phi: \mathbb{R} \rightarrow S^{1}$,
$\phi(x)=(\cos x, \sin x), \quad S^{1} \subset \mathbb{R}^{2}$.
$\phi(x)=e^{i x}=\cos x+i \sin x, \quad S^{1} \subset \mathbb{C}$.
ϕ : wrapping map
$\phi(x+2 \pi k)=\phi(x), \quad k \in \mathbb{Z}$.
$\alpha \in \mathbb{R}$ is an angular coordinate of $x \in S^{1}$ if and only if $\phi(\alpha)=x$.
For any arc $\gamma \subset S^{1}$ there exists a continuous branch $\alpha: \gamma \rightarrow \mathbb{R}$ of the angular coordinate.
If $\alpha_{1}: \gamma \rightarrow \mathbb{R}$ and $\alpha_{2}: \gamma \rightarrow \mathbb{R}$ are two continuous branches then $\alpha_{1}-\alpha_{2}$ is a constant $2 \pi k, k \in \mathbb{Z}$.

Examples of continuous branches:
$\alpha: S^{1} \backslash\{1\} \rightarrow(0,2 \pi)$,
$\alpha: S^{1} \backslash\{-1\} \rightarrow(-\pi, \pi)$.

Example. $f: S^{1} \rightarrow S^{1}, f: z \mapsto z^{2}$ (doubling map), in angular coordinates: $\alpha \mapsto 2 \alpha(\bmod 2 \pi)$.

The doubling map: smooth, 2-to-1, no critical points.
Theorem The doubling map is chaotic.
Sketch of the proof: If γ is a short arc, then $f(\gamma)$ is an arc twice as long (\Longrightarrow expansiveness). Moreover, $f^{n}(\gamma)=S^{1}$ for n large enough (\Longrightarrow topological transitivity).
α has finite orbit if $\alpha=2 \pi m / k$, where m and k are coprime integers. α is periodic if k is odd.

Orientation-preserving and orientation-reversing

The real line \mathbb{R} has two orientations.
For maps of an interval: orientation-preserving $=$ monotone increasing, orientation-reversing $=$ monotone decreasing.

The circle S^{1} also has two orientations (clockwise and counterclockwise).

Given a map $f: S^{1} \rightarrow S^{1}$, we say that a map $F: \mathbb{R} \rightarrow \mathbb{R}$ is a lift of f if $f \circ \phi=\phi \circ F$, where $\phi: \mathbb{R} \rightarrow S^{1}$ is the wrapping map. Any continuous map $f: S^{1} \rightarrow S^{1}$ admits a continuous lift F. The lift satisfies $F(x+2 \pi)-F(x)=2 \pi k$ for some $k \in \mathbb{Z}$ and all $x \in \mathbb{R}$. If F_{0} is another continuous lift of f, then $F-F_{0}$ is a constant function.
A continuous map $f: S^{1} \rightarrow S^{1}$ is orientation-preserving (resp., orientation-reversing) if so is the continuous lift of f.

Maps of the circle

$f: S^{1} \rightarrow S^{1}$,
f an orientation-preserving homeomorphism.

Rotations of the circle

Rotations of the circle

$R_{\omega}: S^{1} \rightarrow S^{1}$, rotation by angle $\omega \in \mathbb{R}$.
$R_{\omega}(z)=e^{i \omega} z$, complex coordinate z;
$R_{\omega}(\alpha)=\alpha+\omega(\bmod 2 \pi)$, angular coordinate α.
Each R_{ω} is an orientation-preserving diffeomorphism; each R_{ω} is an isometry; each R_{ω} preserves Lebesgue measure on S^{1}.
R_{ω} is a one-parameter family of maps.
R_{ω} is a transformation group.
Indeed, $R_{\omega_{1}} R_{\omega_{2}}=R_{\omega_{1}+\omega_{2}}, R_{\omega}^{-1}=R_{-\omega}$.
It follows that $R_{\omega}^{n}=R_{n \omega}, n=1,2, \ldots$
Also, $R_{0}=$ id and $R_{\omega+2 \pi k}=R_{\omega}, k \in \mathbb{Z}$.

An angle ω is called rational if $\omega=r \pi, r \in \mathbb{Q}$. Otherwise ω is an irrational angle.

If ω is a rational angle then R_{ω} is a periodic map. All points of S^{1} are periodic of the same period. If $\omega=2 \pi m / n$, where m and n are coprime integers, $n>0$, then the period of R_{ω} is n.

If ω is irrational then R_{ω} has no periodic points. If ω is irrational then R_{ω} is minimal: each orbit is dense in S^{1}.
If ω is irrational then each orbit of R_{ω} is uniformly distributed in S^{1}.

Minimality

Theorem (Jacobi) Suppose ω is an irrational angle. Then the rotation R_{ω} is minimal: all orbits of R_{ω} are dense in S^{1}.

Proof: Take an arc $\gamma \subset S^{1}$. Then $R_{\omega}^{n}(\gamma), n \geq 1$, is an arc of the same length as γ. Since S^{1} has finite length, the arcs $\gamma, R_{\omega}(\gamma), R_{\omega}^{2}(\gamma), \ldots$ cannot all be disjoint. Hence $R_{\omega}^{n}(\gamma) \cap R_{\omega}^{m}(\gamma) \neq \emptyset$ for some $0 \leq n<m$. But $R_{\omega}^{n}(\gamma) \cap R_{\omega}^{m}(\gamma)=R_{\omega}^{n}\left(\gamma \cap R_{\omega}^{m-n}(\gamma)\right)$ so $\gamma \cap R_{\omega}^{m-n}(\gamma) \neq \emptyset$.
Thus for any $\varepsilon>0$ there exists $k \geq 1$ such that $R_{\omega}^{k}=R_{k \omega}$ is the rotation by an angle $\omega^{\prime},\left|\omega^{\prime}\right|<\varepsilon$. Note that $\omega^{\prime} \neq 0$ since ω is an irrational angle. Pick any $x \in S^{1}$. Let $n=\left\lceil 2 \pi /\left|\omega^{\prime}\right|\right\rceil$. Then points $x, R_{k \omega}(x)=R_{\omega}^{k}(x), R_{k \omega}^{2}(x)=R_{\omega}^{2 k}(x), \ldots$, $R_{k \omega}^{n}(x)=R_{\omega}^{n k}(x)$ divide S^{1} into arcs of length $<\varepsilon$.

Uniform distribution

Let $T: S^{1} \rightarrow S^{1}$ be a homeomorphism and $x \in S^{1}$. Consider the orbit $x, T(x), T^{2}(x), \ldots, T^{n}(x), \ldots$

Let $\gamma \subset S^{1}$ be an arc. By $N(x, \gamma ; n)$ denote the number of integers $k \in\{0,1, \ldots, n-1\}$ such that $T^{k}(x) \in \gamma$. The orbit of x is uniformly distributed in S^{1} if

$$
\lim _{n \rightarrow \infty} \frac{N\left(x, \gamma_{1} ; n\right)}{N\left(x, \gamma_{2} ; n\right)}=1
$$

for any two arcs γ_{1} and γ_{2} of the same length.

An equivalent condition:

$$
\lim _{n \rightarrow \infty} \frac{N\left(x, \gamma_{1} ; n\right)}{N\left(x, \gamma_{2} ; n\right)}=\frac{\text { length }\left(\gamma_{1}\right)}{\text { length }\left(\gamma_{2}\right)}
$$

for any arcs γ_{1} and γ_{2}.
Another equivalent condition:

$$
\lim _{n \rightarrow \infty} \frac{N(x, \gamma ; n)}{n}=\frac{\text { length }(\gamma)}{2 \pi}
$$

for any arc γ.
Theorem (Kronecker-Weyl) Suppose ω is an irrational angle. Then all orbits of the rotation R_{ω} are uniformly distributed in S^{1}.

Fractional linear transformations of S^{1}

A fractional linear transformation of the complex plane \mathbb{C} is given by

$$
f(z)=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{C}
$$

How can we tell if $f\left(S^{1}\right)=S^{1}$? This happens in the case

$$
f(z)=e^{i \psi} \frac{z-z_{0}}{\bar{z}_{0} z-1}
$$

where $\left|z_{0}\right| \neq 1$ and $\psi \in \mathbb{R}$. Indeed, if $z \in S^{1}$ then
$z=e^{i \alpha}, \quad z_{0}=r e^{i \beta}$,
$z-z_{0}=e^{i \alpha}-r e^{i \beta}=e^{i \alpha}\left(1-r e^{i \beta} e^{-i \alpha}\right)$,
$\bar{z}_{0} z-1=r e^{-i \beta} e^{i \alpha}-1$ so that $f(z) \in S^{1}$.

Fractional linear transformations of S^{1}

$S^{1}=\{z \in \mathbb{C}:|z|=1\}$,
$f: S^{1} \rightarrow S^{1}$,

$$
f(z)=-e^{i \omega} \frac{z-z_{0}}{\bar{z}_{0} z-1},
$$

where $z \in \mathbb{C},\left|z_{0}\right| \neq 1$ and $\omega \in \mathbb{R}$.
Fractional linear transformations of S^{1} form a group. Rotations of the circle form a subgroup ($z_{0}=0$).
f is orientation-preserving if $\left|z_{0}\right|<1$ and orientation-reversing if $\left|z_{0}\right|>1$.

$$
\begin{gathered}
f(z)=\frac{a z+b}{c z+d}, \quad g(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}} \\
f(g(z))=\frac{a \frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}+b}{c \frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}+d}=\frac{\left(a a^{\prime}+b c^{\prime}\right) z+a b^{\prime}+b d^{\prime}}{\left(c a^{\prime}+d c^{\prime}\right) z+c b^{\prime}+d d^{\prime}} \\
\frac{a z+b}{c z+d} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{gathered}
$$

Composition of fractional linear transformations corresponds to matrix multiplication. Moreover, the action of f on the circle corresponds to the action of a linear transformation on lines going through the origin.

$$
\begin{gathered}
f(z)=-e^{i \omega} \frac{z-z_{0}}{\bar{z}_{0} z-1} \\
-e^{i \omega / 2}\left(\begin{array}{cc}
e^{i \omega / 2} & -z_{0} e^{i \omega / 2} \\
-\bar{z}_{0} e^{-i \omega / 2} & e^{-i \omega / 2}
\end{array}\right) .
\end{gathered}
$$

$\operatorname{det}=1-\left|z_{0}\right|^{2}, \quad \operatorname{Tr}=e^{i \omega / 2}+e^{-i \omega / 2}=2 \cos (\omega / 2)$.
Characteristic equation:
$\lambda^{2}-2 \cos (\omega / 2) \lambda+1-\left|z_{0}\right|^{2}=0$.
Discriminant:
$D=\cos ^{2}(\omega / 2)-1+\left|z_{0}\right|^{2}=\left|z_{0}\right|^{2}-\sin ^{2}(\omega / 2)$.
If $D<0$ then f is elliptic.
If $D=0$ then f is parabolic.
If $D>0$ then f is hyperbolic.

Theorem (i) If f is elliptic then f has no fixed points and is topologically conjugate to a rotation. (ii) If f is parabolic then f has a unique fixed point, which is neutral. Besides, the fixed point is weakly semi-attracting and semi-repelling.
(iii) If f is hyperbolic then f has two fixed points; one is attracting, the other is repelling.

Example. Given $\omega \in(0, \pi)$, the one-parameter family

$$
f_{r}(z)=e^{i \omega} \frac{z-r}{1-r z}, \quad 0 \leq r<1
$$

undergoes a saddle-node bifurcation at
$r=r_{0}=|\sin (\omega / 2)|$.

