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Dynamical Systems and Chaos

Lecture 15:
Maps of the circle.



Circle S1.
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S1 = {(x , y) ∈ R2 : |x |2 + |y |2 = 1}
S1 = {z ∈ C : |z | = 1}
T1 = R/Z

T1 = R/2πZ

α : S1 → [0, 2π),

angular coordinate

α : S1 → R/2πZ → R

(multi-valued function)



φ : R → S1,
φ(x) = (cos x , sin x), S1 ⊂ R2.

φ(x) = e ix = cos x + i sin x , S1 ⊂ C.
φ: wrapping map

φ(x + 2πk) = φ(x), k ∈ Z.

α ∈ R is an angular coordinate of x ∈ S1 if and
only if φ(α) = x .

For any arc γ ⊂ S1 there exists a continuous

branch α : γ → R of the angular coordinate.

If α1 : γ → R and α2 : γ → R are two continuous

branches then α1 − α2 is a constant 2πk , k ∈ Z.
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Examples of continuous branches:

α : S1 \ {1} → (0, 2π),
α : S1 \ {−1} → (−π, π).



Example. f : S1 → S1, f : z 7→ z2 (doubling map),
in angular coordinates: α 7→ 2α (mod 2π).

The doubling map: smooth, 2-to-1, no critical points.

Theorem The doubling map is chaotic.

Sketch of the proof: If γ is a short arc, then f (γ) is an arc
twice as long ( =⇒ expansiveness). Moreover, f n(γ) = S1

for n large enough ( =⇒ topological transitivity).

α has finite orbit if α = 2πm/k, where m and k are coprime
integers. α is periodic if k is odd.



Orientation-preserving and orientation-reversing

The real line R has two orientations.

For maps of an interval:
orientation-preserving = monotone increasing,
orientation-reversing = monotone decreasing.

The circle S1 also has two orientations
(clockwise and counterclockwise).

Given a map f : S1 → S1, we say that a map F : R → R is a
lift of f if f ◦φ = φ ◦F , where φ : R → S1 is the wrapping
map. Any continuous map f : S1 → S1 admits a continuous
lift F . The lift satisfies F (x + 2π)− F (x) = 2πk for some
k ∈ Z and all x ∈ R. If F0 is another continuous lift of f ,
then F − F0 is a constant function.

A continuous map f : S1 → S1 is orientation-preserving
(resp., orientation-reversing) if so is the continuous lift of f .



Maps of the circle

f : S1 → S1,
f an orientation-preserving homeomorphism.



Rotations of the circle
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Rotations of the circle

Rω : S1 → S1, rotation by angle ω ∈ R.
Rω(z) = e iωz , complex coordinate z ;

Rω(α) = α + ω (mod 2π), angular coordinate α.

Each Rω is an orientation-preserving diffeomorphism;
each Rω is an isometry;

each Rω preserves Lebesgue measure on S1.

Rω is a one-parameter family of maps.
Rω is a transformation group.

Indeed, Rω1
Rω2

= Rω1+ω2
, R−1

ω = R−ω.
It follows that Rn

ω = Rnω, n = 1, 2, . . . .

Also, R0 = id and Rω+2πk = Rω, k ∈ Z.



An angle ω is called rational if ω = rπ, r ∈ Q.
Otherwise ω is an irrational angle.

If ω is a rational angle then Rω is a periodic map.
All points of S1 are periodic of the same period.

If ω = 2πm/n, where m and n are coprime

integers, n > 0, then the period of Rω is n.

If ω is irrational then Rω has no periodic points.

If ω is irrational then Rω is minimal: each orbit is

dense in S1.

If ω is irrational then each orbit of Rω is uniformly
distributed in S1.



Minimality

Theorem (Jacobi) Suppose ω is an irrational

angle. Then the rotation Rω is minimal: all orbits
of Rω are dense in S1.

Proof: Take an arc γ ⊂ S1. Then Rn

ω
(γ), n ≥ 1, is an arc

of the same length as γ. Since S1 has finite length, the arcs
γ,Rω(γ),R

2

ω
(γ), . . . cannot all be disjoint. Hence

Rn

ω
(γ) ∩ Rm

ω
(γ) 6= ∅ for some 0 ≤ n < m. But

Rn

ω
(γ) ∩ Rm

ω
(γ) = Rn

ω
(γ ∩ Rm−n

ω
(γ)) so γ ∩ Rm−n

ω
(γ) 6= ∅.

Thus for any ε > 0 there exists k ≥ 1 such that Rk

ω
= Rkω is

the rotation by an angle ω′, |ω′| < ε. Note that ω′ 6= 0 since
ω is an irrational angle. Pick any x ∈ S1. Let n = ⌈2π/|ω′|⌉.
Then points x ,Rkω(x) = Rk

ω
(x),R2

kω
(x) = R2k

ω
(x), . . . ,

Rn

kω
(x) = Rnk

ω
(x) divide S1 into arcs of length < ε.



Uniform distribution

Let T : S1 → S1 be a homeomorphism and x ∈ S1.
Consider the orbit x ,T (x),T 2(x), . . . ,T n(x), . . .

Let γ ⊂ S1 be an arc. By N(x , γ; n) denote the

number of integers k ∈ {0, 1, . . . , n − 1} such that
T k(x) ∈ γ. The orbit of x is uniformly

distributed in S1 if

lim
n→∞

N(x , γ1; n)

N(x , γ2; n)
= 1

for any two arcs γ1 and γ2 of the same length.



An equivalent condition:

lim
n→∞

N(x , γ1; n)

N(x , γ2; n)
=

length(γ1)

length(γ2)

for any arcs γ1 and γ2.

Another equivalent condition:

lim
n→∞

N(x , γ; n)

n
=

length(γ)

2π

for any arc γ.

Theorem (Kronecker-Weyl) Suppose ω is an
irrational angle. Then all orbits of the rotation Rω
are uniformly distributed in S1.



Fractional linear transformations of S1

A fractional linear transformation of the
complex plane C is given by

f (z) =
az + b

cz + d
, a, b, c , d ∈ C.

How can we tell if f (S1) = S1? This happens in
the case

f (z) = e iψ
z − z0

z̄0z − 1
,

where |z0| 6= 1 and ψ ∈ R. Indeed, if z ∈ S1 then

z = e iα, z0 = re iβ,

z − z0 = e iα − re iβ = e iα(1− re iβe−iα),
z̄0z − 1 = re−iβe iα − 1 so that f (z) ∈ S1.



Fractional linear transformations of S1

S1 = {z ∈ C : |z | = 1},
f : S1 → S1,

f (z) = −e iω
z − z0

z̄0z − 1
,

where z ∈ C, |z0| 6= 1 and ω ∈ R.

Fractional linear transformations of S1 form a
group. Rotations of the circle form a subgroup
(z0 = 0).

f is orientation-preserving if |z0| < 1 and
orientation-reversing if |z0| > 1.



f (z) =
az + b

cz + d
, g(z) =

a′z + b′

c ′z + d ′
,

f (g(z)) =
a a

′
z+b

′

c ′z+d ′
+ b

c a′z+b′

c ′z+d ′
+ d

=
(aa′ + bc ′)z + ab′ + bd ′

(ca′ + dc ′)z + cb′ + dd ′
,

az + b

cz + d
7→

(

a b

c d

)

.

Composition of fractional linear transformations

corresponds to matrix multiplication. Moreover,
the action of f on the circle corresponds to the
action of a linear transformation on lines going

through the origin.



f (z) = −e iω
z − z0

z̄0z − 1
,

−e iω/2
(

e iω/2 −z0e
iω/2

−z̄0e
−iω/2 e−iω/2

)

.

det = 1− |z0|
2, Tr = e iω/2 + e−iω/2 = 2 cos(ω/2).

Characteristic equation:
λ2 − 2 cos(ω/2)λ+ 1− |z0|2 = 0.

Discriminant:
D = cos2(ω/2)− 1 + |z0|2 = |z0|2 − sin2(ω/2).

If D < 0 then f is elliptic.

If D = 0 then f is parabolic.
If D > 0 then f is hyperbolic.



Theorem (i) If f is elliptic then f has no fixed

points and is topologically conjugate to a rotation.
(ii) If f is parabolic then f has a unique fixed point,

which is neutral. Besides, the fixed point is weakly
semi-attracting and semi-repelling.

(iii) If f is hyperbolic then f has two fixed points;
one is attracting, the other is repelling.

Example. Given ω ∈ (0, π), the one-parameter
family

fr(z) = e iω
z − r

1− rz
, 0 ≤ r < 1

undergoes a saddle-node bifurcation at
r = r0 = | sin(ω/2)|.


