MATH 614 Dynamical Systems and Chaos Lecture 15: Maps of the circle.

$$\phi: \mathbb{R} \to S^{1},$$

$$\phi(x) = (\cos x, \sin x), \quad S^{1} \subset \mathbb{R}^{2}.$$

$$\phi(x) = e^{ix} = \cos x + i \sin x, \quad S^{1} \subset \mathbb{C}.$$

$$\phi: \text{ wrapping map}$$

$$\phi(x + 2\pi k) = \phi(x), \quad k \in \mathbb{Z}.$$

$$\alpha \in \mathbb{R} \text{ is an angular coordinate of } x \in S^{1} \text{ if and}$$

only if $\phi(\alpha) = x$.

For any arc $\gamma \subset S^1$ there exists a continuous branch $\alpha : \gamma \to \mathbb{R}$ of the angular coordinate.

If $\alpha_1 : \gamma \to \mathbb{R}$ and $\alpha_2 : \gamma \to \mathbb{R}$ are two continuous branches then $\alpha_1 - \alpha_2$ is a constant $2\pi k$, $k \in \mathbb{Z}$.

Example. $f: S^1 \to S^1$, $f: z \mapsto z^2$ (doubling map), in angular coordinates: $\alpha \mapsto 2\alpha \pmod{2\pi}$.

The doubling map: smooth, 2-to-1, no critical points.

Theorem The doubling map is chaotic.

Sketch of the proof: If γ is a short arc, then $f(\gamma)$ is an arc twice as long (\implies expansiveness). Moreover, $f^n(\gamma) = S^1$ for *n* large enough (\implies topological transitivity).

 α has finite orbit if $\alpha = 2\pi m/k$, where *m* and *k* are coprime integers. α is periodic if *k* is odd.

Orientation-preserving and orientation-reversing

The real line ${\mathbb R}$ has two orientations.

```
For maps of an interval:
orientation-preserving = monotone increasing,
orientation-reversing = monotone decreasing.
```

The circle S^1 also has two orientations (clockwise and counterclockwise).

Given a map $f: S^1 \to S^1$, we say that a map $F: \mathbb{R} \to \mathbb{R}$ is a **lift** of f if $f \circ \phi = \phi \circ F$, where $\phi: \mathbb{R} \to S^1$ is the wrapping map. Any continuous map $f: S^1 \to S^1$ admits a continuous lift F. The lift satisfies $F(x + 2\pi) - F(x) = 2\pi k$ for some $k \in \mathbb{Z}$ and all $x \in \mathbb{R}$. If F_0 is another continuous lift of f, then $F - F_0$ is a constant function.

A continuous map $f: S^1 \to S^1$ is **orientation-preserving** (resp., **orientation-reversing**) if so is the continuous lift of f.

f an orientation-preserving homeomorphism.

Rotations of the circle

Rotations of the circle

$$egin{aligned} &\mathcal{R}_{\omega}: \mathcal{S}^{1}
ightarrow \mathcal{S}^{1}, ext{ rotation by angle } \omega \in \mathbb{R}. \ &\mathcal{R}_{\omega}(z) = e^{i\omega}z, ext{ complex coordinate } z; \ &\mathcal{R}_{\omega}(lpha) = lpha + \omega \ (ext{mod } 2\pi), ext{ angular coordinate } lpha. \end{aligned}$$

Each R_{ω} is an orientation-preserving diffeomorphism; each R_{ω} is an isometry;

each R_{ω} preserves Lebesgue measure on S^1 .

 R_{ω} is a one-parameter family of maps. R_{ω} is a **transformation group**.

Indeed, $R_{\omega_1}R_{\omega_2} = R_{\omega_1+\omega_2}$, $R_{\omega}^{-1} = R_{-\omega}$. It follows that $R_{\omega}^n = R_{n\omega}$, n = 1, 2, ...Also, $R_0 = \text{id}$ and $R_{\omega+2\pi k} = R_{\omega}$, $k \in \mathbb{Z}$.

An angle ω is called **rational** if $\omega = r\pi$, $r \in \mathbb{Q}$. Otherwise ω is an **irrational** angle.

If ω is a rational angle then R_{ω} is a periodic map. All points of S^1 are periodic of the same period. If $\omega = 2\pi m/n$, where *m* and *n* are coprime integers, n > 0, then the period of R_{ω} is *n*.

If ω is irrational then R_{ω} has no periodic points. If ω is irrational then R_{ω} is **minimal**: each orbit is dense in S^1 .

If ω is irrational then each orbit of R_{ω} is **uniformly distributed** in S^1 .

Minimality

Theorem (Jacobi) Suppose ω is an irrational angle. Then the rotation R_{ω} is minimal: all orbits of R_{ω} are dense in S^1 .

Proof: Take an arc $\gamma \subset S^1$. Then $R^n_{\omega}(\gamma)$, $n \geq 1$, is an arc of the same length as γ . Since S^1 has finite length, the arcs $\gamma, R_{\omega}(\gamma), R^2_{\omega}(\gamma), \ldots$ cannot all be disjoint. Hence $R^n_{\omega}(\gamma) \cap R^m_{\omega}(\gamma) \neq \emptyset$ for some $0 \leq n < m$. But $R^n_{\omega}(\gamma) \cap R^m_{\omega}(\gamma) = R^n_{\omega}(\gamma \cap R^{m-n}_{\omega}(\gamma))$ so $\gamma \cap R^{m-n}_{\omega}(\gamma) \neq \emptyset$.

Thus for any $\varepsilon > 0$ there exists $k \ge 1$ such that $R_{\omega}^{k} = R_{k\omega}$ is the rotation by an angle ω' , $|\omega'| < \varepsilon$. Note that $\omega' \ne 0$ since ω is an irrational angle. Pick any $x \in S^{1}$. Let $n = \lceil 2\pi/|\omega'| \rceil$. Then points $x, R_{k\omega}(x) = R_{\omega}^{k}(x), R_{k\omega}^{2}(x) = R_{\omega}^{2k}(x), \ldots, R_{k\omega}^{n}(x) = R_{\omega}^{nk}(x)$ divide S^{1} into arcs of length $< \varepsilon$.

Uniform distribution

Let $T: S^1 \to S^1$ be a homeomorphism and $x \in S^1$. Consider the orbit $x, T(x), T^2(x), \ldots, T^n(x), \ldots$

Let $\gamma \subset S^1$ be an arc. By $N(x, \gamma; n)$ denote the number of integers $k \in \{0, 1, ..., n-1\}$ such that $T^k(x) \in \gamma$. The orbit of x is **uniformly distributed** in S^1 if

$$\lim_{n\to\infty}\frac{N(x,\gamma_1;n)}{N(x,\gamma_2;n)}=1$$

for any two arcs γ_1 and γ_2 of the same length.

An equivalent condition:

$$\lim_{n\to\infty}\frac{N(x,\gamma_1;n)}{N(x,\gamma_2;n)}=\frac{length(\gamma_1)}{length(\gamma_2)}$$

for any arcs γ_1 and γ_2 .

Another equivalent condition:

$$\lim_{n\to\infty}\frac{N(x,\gamma;n)}{n}=\frac{length(\gamma)}{2\pi}$$

for any arc γ .

Theorem (Kronecker-Weyl) Suppose ω is an irrational angle. Then all orbits of the rotation R_{ω} are uniformly distributed in S^1 .

Fractional linear transformations of S^1

A fractional linear transformation of the complex plane $\mathbb C$ is given by

$$f(z) = rac{az+b}{cz+d}, \qquad a,b,c,d \in \mathbb{C}.$$

How can we tell if $f(S^1) = S^1$? This happens in the case

$$f(z)=e^{i\psi}\frac{z-z_0}{\bar{z}_0z-1},$$

where $|z_0| \neq 1$ and $\psi \in \mathbb{R}$. Indeed, if $z \in S^1$ then $z = e^{i\alpha}$, $z_0 = re^{i\beta}$, $z - z_0 = e^{i\alpha} - re^{i\beta} = e^{i\alpha}(1 - re^{i\beta}e^{-i\alpha})$, $\bar{z}_0 z - 1 = re^{-i\beta}e^{i\alpha} - 1$ so that $f(z) \in S^1$. Fractional linear transformations of S¹

$$S^1 = \{z \in \mathbb{C} : |z| = 1\},$$

 $f: S^1 o S^1,$

$$f(z)=-e^{i\omega}\frac{z-z_0}{\bar{z}_0z-1},$$

where $z \in \mathbb{C}$, $|z_0| \neq 1$ and $\omega \in \mathbb{R}$.

Fractional linear transformations of S^1 form a **group**. Rotations of the circle form a **subgroup** $(z_0 = 0)$.

f is orientation-preserving if $|z_0| < 1$ and orientation-reversing if $|z_0| > 1$.

$$f(z) = \frac{az+b}{cz+d}, \quad g(z) = \frac{a'z+b'}{c'z+d'},$$
$$f(g(z)) = \frac{a\frac{a'z+b'}{c'z+d'}+b}{c\frac{a'z+b'}{c'z+d'}+d} = \frac{(aa'+bc')z+ab'+bd'}{(ca'+dc')z+cb'+dd'},$$
$$\frac{az+b}{cz+d} \mapsto \begin{pmatrix} a & b\\ c & d \end{pmatrix}.$$

Composition of fractional linear transformations corresponds to matrix multiplication. Moreover, the action of f on the circle corresponds to the action of a linear transformation on lines going through the origin.

$$f(z)=-e^{i\omega}rac{z-z_0}{ar{z}_0z-1}, \ -e^{i\omega/2} \left(egin{array}{c} e^{i\omega/2}&-z_0e^{i\omega/2}\ -ar{z}_0e^{-i\omega/2}&e^{-i\omega/2}\end{array}
ight).$$

det = $1 - |z_0|^2$, Tr = $e^{i\omega/2} + e^{-i\omega/2} = 2\cos(\omega/2)$.

Characteristic equation: $\lambda^2 - 2\cos(\omega/2)\lambda + 1 - |z_0|^2 = 0.$

Discriminant:

$$D = \cos^2(\omega/2) - 1 + |z_0|^2 = |z_0|^2 - \sin^2(\omega/2).$$

If D < 0 then f is elliptic. If D = 0 then f is parabolic. If D > 0 then f is hyperbolic. **Theorem (i)** If f is elliptic then f has no fixed points and is topologically conjugate to a rotation. **(ii)** If f is parabolic then f has a unique fixed point, which is neutral. Besides, the fixed point is weakly semi-attracting and semi-repelling.

(iii) If f is hyperbolic then f has two fixed points; one is attracting, the other is repelling.

Example. Given $\omega \in (0, \pi)$, the one-parameter family

$$f_r(z)=e^{i\omega}rac{z-r}{1-rz},\quad 0\leq r<1.$$

undergoes a saddle-node bifurcation at $r = r_0 = |\sin(\omega/2)|$.