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Dynamical Systems and Chaos

Lecture 21:

Markov partitions.

Solenoid.



General symbolic dynamics

Suppose f : X → X is a dynamical system. Given a partition
of the set X into disjoint subsets Xα, α ∈ A indexed by
elements of a finite set A, we can define the (forward)
itinerary map S : X → ΣA so that S(x) = (s0s1s2 . . . ),
where f n(x) ∈ Xsn for all n ≥ 0.

If the map f is invertible, then we can define the full itinerary
map S : X → Σ±

A.

In the case f is continuous, the itinerary map is continuous if
the sets Xα are clopen (i.e., both closed and open). If,
additionally, X is compact, then the itinerary map provides a
semi-conjugacy of f with a subshift.

In the case a partition into clopen sets is not possible, we can
choose closed sets Xα that do not cover X completely or
closed sets that partially overlap.



Examples of stable and unstable sets

• Hyperbolic toral automorphism LA : T2 → T
2.

Stable and unstable sets of LA are images of the corresponding
sets of the linear map L(x) = Ax, x ∈ R

2, under the natural
projection π : R2 → T

2. These sets are dense in the torus T2.



Markov partitions

Definition. Given a metric space M and a homeomorphism
f : M → M , a rectangle is a closed set R ⊂ M such that for
any p, q ∈ R , the intersection W s(p) ∩W u(q) ∩ R is not
empty. A Markov partition of M is a partition of M into
rectangles {R1, . . . ,Rm} with disjoint interiors such that
whenever p ∈ Ri and f (p) ∈ Rj , we have
f
(

W u(p) ∩ Ri

)

⊃ W u(f (p)) ∩ Rj and

f
(

W s(p) ∩ Ri

)

⊂ W s(f (p)) ∩ Rj .

Good Bad
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The conditions ensure that f n(Ri) ∩ Rj 6= ∅ and
f m(Rj) ∩ Rk 6= ∅ implies f n+m(Ri) ∩ Rk 6= ∅ so that the
corresponding symbolic dynamics is a topological Markov
chain.

Note that all points in W s(p) ∩ Ri have the same forward
itinerary while all points in W u(p) ∩ Ri have the same
backward itinerary.



Example



Cat map

The cat map is a hyperbolic toral automorphism

LA : T2 → T
2 given by the matrix A =

(

2 1
1 1

)

.
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Markov partition for the cat map
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Solid torus

Let S1 be the circle and B2 be the unit disk in R
2:

B2 = {(x , y) ∈ R
2 | x2 + y 2 ≤ 1}.

The Cartesian product D = S1 × B2 is called the

solid torus. It is a 3-dimensional manifold with
boundary that can be realized as a closed subset in

R
3. The boundary ∂D is the torus.



Let D = S1 × B2 be the solid torus. We represent the circle
S1 as R/Z. For any θ ∈ S1 and p ∈ B2 let

F (θ, p) =
(

2θ, ap + bφ(θ)
)

,

where φ : S1 → ∂B2 is defined by

φ(θ) =
(

cos(2πθ), sin(2πθ)
)

and constants a, b are chosen so that 0 < a < b and
a + b < 1. Then F : D → D is a smooth, one-to-one map.
The image F (D) is contained strictly inside of D.



The solid torus D = S1 × B2 is foliated by discs
B(θ) = {θ} × B2. The image F (B(θ)) is a smaller disc
inside of B(2θ).

It follows that all points in a disc B(θ) are forward asymptotic.
In particular, B(θ) is contained in the stable set W s(x) of any
point x ∈ B(θ). In fact, W s(x) =

⋃

n,k∈Z

B(θ + n/2k).



Solenoid

The sets D, F (D), F 2(D), . . . are closed and nested. The
intersection Λ =

⋂

n≥0

F n(D) is called the solenoid.

The solenoid Λ is a compact set invariant under the map F .
The restriction of F to Λ is an invertible map. The
intersection of Λ with any disc B(θ) is a Cantor set.
Moreover, Λ is locally the Cartesian product of a Cantor set
and an arc.





Properties of the solenoid

Theorem 1 The restriction F |Λ is chaotic, i.e.,

• it has sensitive dependence on initial conditions,
• periodic points are dense in Λ,

• it is topologically transitive.

Theorem 2 The solenoid Λ is an attractor of the
map F . Namely, dist

(

F n(x),Λ
)

→ 0 as n → ∞
for all x ∈ D.

Theorem 3 For any point x ∈ Λ, the unstable set
W u(x) is a smooth curve that is dense in Λ.

Theorem 4 The solenoid is connected, but not

locally connected or arcwise connected.


