Dynamical Systems and Chaos

Lecture 28:

MATH 614

Periodic points of holomorphic maps.

Möbius transformations.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \to \mathbb{C}$ be a holomorphic function. Suppose that $F(z_0) = z_0$ for some $z_0 \in U$. The fixed point z_0 is called

- attracting if $|F'(z_0)| < 1$;
- repelling if $|F'(z_0)| > 1$;
- neutral if $|F'(z_0)| = 1$.

Now suppose that $F^n(z_1) = z_1$ for some $z_1 \in U$ and an integer $n \ge 1$. The periodic point z_1 is called

- attracting if $|(F^n)'(z_1)| < 1$;
- repelling if $|(F^n)'(z_1)| > 1$;
- neutral if $|(F^n)'(z_1)| = 1$.

The multiplier $(F^n)'(z_1)$ is the same for all points in the orbit of z_1 . In particular, all these points are of the same type as z_1 . Note that the multiplier is preserved under any holomorphic change of coordinates.

Examples

$$Q(z) = z^2.$$

The squaring function has 2 fixed points: 0 and 1.

0 is super attracting: Q'(0) = 0.

1 is repelling: Q'(1) = 2.

All nonzero periodic points of Q are located on the unit circle. They are all repelling since |Q'(z)| = 2 for any z, |z| = 1.

Any polynomial P of degree at least 2.

Theorem P has infinitely many periodic points. Only finitely many of them can be attracting.

Note that any periodic point z_0 of period n is a root of the polynomial $F(z) = P^n(z) - z$, which has degree $(\deg P)^n$. The root is multiple if $(P^n)'(z_0) = 1$.

Stereographic projection

Suppose Σ is a sphere in \mathbb{R}^3 and Π is the tangent plane at some point $P_s \in \Sigma$. Let P_n be the point of Σ opposite to P_s . Then any straight line through P_n not parallel to Π intersects the plane Π and also intersects the sphere Σ at a point different from P_n .

This gives rise to a map $S: \Sigma \setminus \{P_n\} \to \Pi$, which is a homeomorphism. The map S is referred to as the **stereographic projection**. Note that S maps any circle on Σ onto a circle or a straight line in the plane Π .

The Riemann sphere

Introducing Cartesian coordinates on the plane Π with the origin at P_s , we can identify Π with the complex plane \mathbb{C} . The **extended complex plane** $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is \mathbb{C} with one extra point "at infinity". We extend the stereographic projection S to a map $S: \Sigma \to \overline{\mathbb{C}}$ by letting $S(P_n) = \infty$. The topology on $\overline{\mathbb{C}}$ is defined so that S be a homeomorphism.

A holomorphic structure on $\mathbb C$ is extended to $\overline{\mathbb C}$ by requiring that the map $H:\overline{\mathbb C}\to\overline{\mathbb C}$ defined by H(z)=1/z for $z\in\mathbb C\setminus\{0\},\ H(0)=\infty$, and $H(\infty)=0$ be holomorphic.

Complex projective line

The Riemann sphere can also be regarded as the **complex projective line** \mathbb{CP}^1 . Formally, elements of \mathbb{CP}^1 are one-dimensional subspaces of the complex vector space \mathbb{C}^2 . They are given by their **homogeneous coordinates** [z:w]. The complex plane \mathbb{C} is embedded into \mathbb{CP}^1 via the map $z\mapsto [z:1]$. The element [1:0] is the point at infinity.

A **projective transformation** T of \mathbb{CP}^1 is given by [z':w']=T([z:w]), where

$$\begin{pmatrix} z' \\ w' \end{pmatrix} = r \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix}$$

for a variable $r \neq 0$ and fixed $\alpha, \beta, \gamma, \delta$ such that $\alpha\delta - \beta\gamma \neq 0$ (so that the matrix is invertible). The matrix is unique up to scaling. In terms of the complex variable z, the map T is given by $T(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$.

Möbius transformations

Definition. A **Möbius transformation** is a rational map of the form $T(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$, where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$, $\alpha \delta - \beta \gamma \neq 0$, regarded as a transformation of the Riemann sphere $\overline{\mathbb{C}}$.

Properties of the Möbius transformations:

- The Möbius transformations form a transformation group.
- ullet Any Möbius transformation is a homeomorphism of $\overline{\mathbb{C}}.$
- Any Möbius transformation is holomorphic.
- Complex affine functions $T(z) = \alpha z + \beta$, $\alpha \neq 0$ are Möbius transformations that fix ∞ .
- Complex linear functions $T(z) = \alpha z$, $\alpha \neq 0$ are Möbius transformations that fix 0 and ∞ .

More properties of Möbius transformations

- The group of Möbius transformations is generated by linear functions $z \mapsto \alpha z$, translations $z \mapsto z + \beta$, and the map $z \mapsto 1/z$.
- \bullet Any Möbius transformation maps circles on the Riemann sphere (which are circles or straight lines in $\mathbb C)$ onto other circles.
- For any triples z_1, z_2, z_3 and w_1, w_2, w_3 of distinct points on $\overline{\mathbb{C}}$ there exists a unique Möbius transformation T such that $T(z_i) = w_i, \ 1 \le i \le 3$.

In the case neither of the six points is ∞ , the map is given by

$$\frac{T(z)-w_1}{w_2-w_1}:\frac{T(z)-w_3}{w_2-w_3}=\frac{z-z_1}{z_2-z_1}:\frac{z-z_3}{z_2-z_3}.$$

More properties of Möbius transformations

- Any Möbius transformation is conjugate (by another Möbius transformation) to a translation or a linear map.
- Any Möbius transformation different from the identity has one or two fixed points.
- If a Möbius transformation has only one fixed point, then this fixed point is neutral.
- If a Möbius transformation has two fixed points, then either both are neutral, or one is attracting while the other is repelling.