MATH 614
Dynamical Systems and Chaos

Lecture 28:

Periodic points of holomorphic maps. Möbius transformations.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow \mathbb{C}$ be a holomorphic function. Suppose that $F\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$. The fixed point z_{0} is called

- attracting if $\left|F^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|F^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|F^{\prime}\left(z_{0}\right)\right|=1$.

Now suppose that $F^{n}\left(z_{1}\right)=z_{1}$ for some $z_{1} \in U$ and an integer $n \geq 1$. The periodic point z_{1} is called

- attracting if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|<1$;
- repelling if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|>1$;
- neutral if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|=1$.

The multiplier $\left(F^{n}\right)^{\prime}\left(z_{1}\right)$ is the same for all points in the orbit of z_{1}. In particular, all these points are of the same type as z_{1}. Note that the multiplier is preserved under any holomorphic change of coordinates.

Examples

- $Q(z)=z^{2}$.

The squaring function has 2 fixed points: 0 and 1 .
0 is super attracting: $Q^{\prime}(0)=0$.
1 is repelling: $Q^{\prime}(1)=2$.
All nonzero periodic points of Q are located on the unit circle. They are all repelling since $\left|Q^{\prime}(z)\right|=2$ for any $z,|z|=1$.

- Any polynomial P of degree at least 2 .

Theorem P has infinitely many periodic points. Only finitely many of them can be attracting.

Note that any periodic point z_{0} of period n is a root of the polynomial $F(z)=P^{n}(z)-z$, which has degree $(\operatorname{deg} P)^{n}$. The root is multiple if $\left(P^{n}\right)^{\prime}\left(z_{0}\right)=1$.

Stereographic projection

Suppose Σ is a sphere in \mathbb{R}^{3} and Π is the tangent plane at some point $P_{s} \in \Sigma$. Let P_{n} be the point of Σ opposite to P_{s}. Then any straight line through P_{n} not parallel to Π intersects the plane Π and also intersects the sphere Σ at a point different from P_{n}.

This gives rise to a map $S: \Sigma \backslash\left\{P_{n}\right\} \rightarrow \Pi$, which is a homeomorphism. The map S is referred to as the stereographic projection. Note that S maps any circle on Σ onto a circle or a straight line in the plane Π.

The Riemann sphere

Introducing Cartesian coordinates on the plane Π with the origin at P_{s}, we can identify Π with the complex plane \mathbb{C}. The extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ is \mathbb{C} with one extra point "at infinity". We extend the stereographic projection S to a map $S: \Sigma \rightarrow \overline{\mathbb{C}}$ by letting $S\left(P_{n}\right)=\infty$. The topology on $\overline{\mathbb{C}}$ is defined so that S be a homeomorphism.
A holomorphic structure on \mathbb{C} is extended to $\overline{\mathbb{C}}$ by requiring that the map $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ defined by $H(z)=1 / z$ for $z \in \mathbb{C} \backslash\{0\}, H(0)=\infty$, and $H(\infty)=0$ be holomorphic.

Complex projective line

The Riemann sphere can also be regarded as the complex projective line $\mathbb{C P}^{1}$. Formally, elements of $\mathbb{C P}^{1}$ are one-dimensional subspaces of the complex vector space \mathbb{C}^{2}. They are given by their homogeneous coordinates $[z: w]$. The complex plane \mathbb{C} is embedded into $\mathbb{C P}^{1}$ via the map $z \mapsto[z: 1]$. The element $[1: 0]$ is the point at infinity. A projective transformation T of $\mathbb{C P}^{1}$ is given by $\left[z^{\prime}: w^{\prime}\right]=T([z: w])$, where

$$
\binom{z^{\prime}}{w^{\prime}}=r\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{z}{w}
$$

for a variable $r \neq 0$ and fixed $\alpha, \beta, \gamma, \delta$ such that $\alpha \delta-\beta \gamma \neq 0$ (so that the matrix is invertible). The matrix is unique up to scaling. In terms of the complex variable z, the map T is given by $T(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$.

Möbius transformations

Definition. A Möbius transformation is a rational map of the form $T(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$, where $\alpha, \beta, \gamma, \delta \in \mathbb{C}, \alpha \delta-\beta \gamma \neq 0$, regarded as a transformation of the Riemann sphere $\overline{\mathbb{C}}$.

Properties of the Möbius transformations:

- The Möbius transformations form a transformation group.
- Any Möbius transformation is a homeomorphism of $\overline{\mathbb{C}}$.
- Any Möbius transformation is holomorphic.
- Complex affine functions $T(z)=\alpha z+\beta, \alpha \neq 0$ are Möbius transformations that fix ∞.
- Complex linear functions $T(z)=\alpha z, \alpha \neq 0$ are Möbius transformations that fix 0 and ∞.

More properties of Möbius transformations

- The group of Möbius transformations is generated by linear functions $z \mapsto \alpha z$, translations $z \mapsto z+\beta$, and the map $z \mapsto 1 / z$.
- Any Möbius transformation maps circles on the Riemann sphere (which are circles or straight lines in \mathbb{C}) onto other circles.
- For any triples z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} of distinct points on $\overline{\mathbb{C}}$ there exists a unique Möbius transformation T such that $T\left(z_{i}\right)=w_{i}, \quad 1 \leq i \leq 3$.
In the case neither of the six points is ∞, the map is given by

$$
\frac{T(z)-w_{1}}{w_{2}-w_{1}}: \frac{T(z)-w_{3}}{w_{2}-w_{3}}=\frac{z-z_{1}}{z_{2}-z_{1}}: \frac{z-z_{3}}{z_{2}-z_{3}}
$$

More properties of Möbius transformations

- Any Möbius transformation is conjugate (by another Möbius transformation) to a translation or a linear map.
- Any Möbius transformation different from the identity has one or two fixed points.
- If a Möbius transformation has only one fixed point, then this fixed point is neutral.
- If a Möbius transformation has two fixed points, then either both are neutral, or one is attracting while the other is repelling.

