End of the class on Monday, March 19 2012: another point of view.

We end up with the question how to find the Laplace transform of $(t-1) u_{3}(t)$ and of $\left(t^{2}-t\right) u_{5}(t)$. We want to use the translation in t property:

$$
\begin{equation*}
\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} F(s) \tag{1}
\end{equation*}
$$

where $F(s)=\mathcal{L}\{f(t)\}$.

1. For $(t-1) u_{3}(t)$ we want to find $f(t)$ such that $f(t-3)=t-1$: Note that

$$
f(t)=f((t+3)-3)=(t+3)-1=t+2
$$

In other words, to find $f(t)$ on the base that $f(t-3)=t-1$ we replace t by $t+3$ in $t-1$.
Further, $F(s)=\mathcal{L}\{t+2\}=\frac{1}{s^{2}}+\frac{2}{s}=\frac{2 s+1}{s^{2}}$.
Therefore by (1) (with $c=3, F(s)=\frac{2 s+1}{s^{2}}$ we have

$$
\mathcal{L}\left\{u_{3}(t)(t-1)\right\}=e^{-3 s} \frac{2 s+1}{s^{2}}
$$

2. For $\left(t^{2}-t\right) u_{5}(t)$ we want to find $f(t)$ such that $f(t-5)=t^{2}-t$ For this, as in the previous case, it is enough to replace t by $t+5$ in $t^{2}-t$:

$$
\begin{gathered}
f(t)=(t+5)^{2}-(t+5)=t^{2}+10 t+25-t-5=t^{2}+9 t+20 \Rightarrow \\
F(s)=\frac{2}{s^{3}}+\frac{9}{s^{2}}+\frac{20}{s}=\frac{20 s^{2}+9 s+2}{s^{3}}
\end{gathered}
$$

Finally, again by (1) (with $c=5$ and $F(s)=\frac{20 s^{2}+9 s+2}{s^{3}}$) we get

$$
\mathcal{L}\left\{u_{5}(t)\left(t^{2}-t\right)\right\}=e^{-5 s} \frac{20 s^{2}+9 s+2}{s^{3}}
$$

